ThingWerx

Getting to Know InfoTables

The InfoTable is an often used and sometimes misunderstood data structure in the
Thingworx platform. Many Service calls use InfoTables as input parameters and
output return values so there is no avoiding them and once you get hang of them,
you may even want to use them in your own Things.

Audience
A new ThingWorx developer who has had some exposure to the Composer,

modeling and the writing of Services and wants to learn more about InfoTables. This
document discusses features available in ThingWorx version 5.2 or higher.

Contents
What is an INFOTADIE? ...t s 2
So how do Arrays WOrk In JaVaSCriPt? ..eeeesssssssssssssessssessssssesssessssssssssssssseses 2
How is an InfoTable different than an Array? ... 3
What iS @ DAtaShape? ...t sess bbb sssssssssesssees 3
How do you create an INfOTabIE? ... sssssssssesssesssssssssssssseees 3
What is an InfoTable (AZaiN)eeeieeesessseessssssesssesssessssssssssessssssssssssssssssssssssssssssssssssees
Playing by the INfoTable RUIES ...t sessssssesssessssssssssssssenes
Two ways to add an Object to an INfOTabIE ...
Dynamically creating or modifying the DataShape of an InfoTablec.cooccnreerrrennee.
What is the best way to manipulate an InfoTable? ... 9
How do you remove all the objects from an InfoTable?conmneneennenneseenneeneenn. 10
Creating InfoTables directly from DataShapesoeeenernsessesesesssessesssseenns 10
What can [do with INfOTabIES? ... sesssssssens 11
SOME EXAIMIPIES c.uvvuieeiemieseeeesssesssesssesssesssesssesssesssss s ssss s s ss s ssessssssans 11
Adding an object based on a DataShape to a Stream........coeeeneneenseenesseesseseennes 11
Displaying an InfoTable in a Mashup using a Grid Widgetccomereeneerneernreenens 12
Declaring a Thing Property of Base Type InfoTableccoeeneeeneenneenneerecsseesseenns 15
Operations that can be performed on InfoTables.......cccomenenenneeneeneeseeerseeens 17

(070) 4 76 11153 1o) s VHTNu TR 21

What is an InfoTable?

An InfoTable is zero indexed, ordered array of JavaScript objects which expose
same properties.

Since an InfoTable is an Array of Objects, it can also be thought of as a table where
the array entries are rows and the object properties of each object in the array are
the columns. Since we are trying to represent tabular data it is important that each
object have the same properties so that each column of the table can map to a
property value.

So how do Arrays work In JavaScript?

If you have ever worked with an Array object in JavaScript you are familiar with
how arrays work. For those who may not be lets go over the basics.

Declaring an array

var myArray=new Array();
var mySecondArray=[];

Both of the above statements are equivalent. They both create array objects.
An array can contain multiple objects in sequence of any type. For example
var myArrayOfStuff=[“Pickel”,3,{name:"Bill”,phone:"555-1212"}];

The above array contains a String, a number and a custom object with the fields
name and phone. If you want to try this out for yourself using the Chrome browser
run it and open the Javascript Console (control-shift-]) and paste in the line above to
create this array and try these examples to access its items. Below is a screen shot of
the JavaScript console in Chrome showing how to create and then access each of the
objects in the JavaScript array.

> var myArray0fStuff=["Pickel",3,{name:"Bill",phone:"555-1212"}];
undefined
myArray0fStuff[0]
"Pickel"
> myArray0fStuff[1]
3
> myArray0fStuff[2]
Object {name: "Bill", phone: "555-1212"}
myArray0fStuff[2].name
"Bill"

The “undefined” value is not an error on line two above. The declaration of a local
scope variable (var) returned the object undefined as a result but it does create the
variable.

How is an InfoTable different than an Array?

In the example above, the JavaScript array contains completely different types of
objects. InfoTables can only contain the same type of object. This type is defined, not
with JavaScript’s native object typing mechanism but through the use of another
ThingWorx specific typing definition called a DataShape. JavaScript considers every
type of object you store in an InfoTable to be of type “Object” as you can see above
when the command myArrayOfStuff[2] is printed out. InfoTables require that each
object in the array expose the exact same properties.

What is a DataShape?

A DataShape is a specification of the required property names and return
types each property of a JavaScript “Object” must have to be added to an
InfoTable.

DataShapes also contain other metadata about a property that is useful for
formatting and displaying the InfoTable in a tabular format or Grid. DataShapes can
be declared in your ThingWorx composer and are required to build a functional
InfoTable. They are essentially a schema mechanism for defining the required fields
of a Thing in ThingWorx.

How do you create an InfoTable?

We talked about creating JavaScript arrays but how do you create an InfoTable and
how is it different than a JavaScript array? Well it starts with a DataShape. Lets
create a simple one. Since you are already familiar with ThingWorx, below is a
screen shot of a simple DataShape defining three fields, name:string, phone:string
and age:number. Go ahead and create this DataShape for yourself.

3 SimpleDataShape ol co

ENTITY INFORMATION = Fields

& General Information

== Field Definitions Hame Additional Info

PERMISSIONS -T-name
@ visibility -T- phone
& Design Time # age
&= Fun Time

Now that you have defined this DataShape, you can declare an InfoTable which can
contain multiple objects that conform to this DataShape.

Note: It is common for ThingWorx to wrap all its Objects inside an InfoTable even if
there is only one object in the InfoTable because knowing the DataShape of that single
object makes it easy to display in the composer.

Create any service and use the “Create InfoTable from selected data shape” snippet
and you will see this code generated.

var params = {
infoTableName : "InfoTable",
dataShapeName : "SimpleDataShape"

}i

var result =
Resources["InfoTableFunctions"].CreateInfoTableFromDataShape (params);

Which can also be restated in a more compact form as:

var result =
Resources["InfoTableFunctions"].CreateInfoTableFromDataShape ({
infoTableName : "InfoTable",
dataShapeName : "SimpleDataShape"

)i

Services always treat the result local scope variable as their return value so when
you actually test run this service, the resulting InfoTable will be returned as its
output. Make sure you declared the output type of the Service as InfoTable.

The results, shown below will not amaze you.

R e ——
¢« TestinfoTables - Test Service

Inputs: Results:

Mo inputs name phone age

You get an empty table with columns named after the DataShape and no data but
there is more going on here than you are seeing. You have created an InfoTable and
using the Chrome developer tools, you can finally see what an InfoTable consists of.

In Chrome, open the Developer Tools (ctrl-shift-1) and select the Network tab. Keep
this tool open and retest this service. Now look at the new row representing your
test in the network tool.

| Q, [] Elements | Network| Sources Timeline Profiles Resources Audits Console 02 > & H x
4
| ® O V¥V = Preserve log Disable cache
Mame *
Path Headers Preview | Fesponse | Cookies Timing
TestinfoTables?Accept=ap. .. 1 {"isCompressed":true,"datashape":{"fieldDefinitions":{"name":{"name":"name", "description":"A person's Nal

You can see that there actually was a complex JavaScript object returned by this
service that created the bland, empty InfoTable you saw in HTML. The returned
object is listed below.

{

"isCompressed":true,

"dataShape": {

"fieldDefinitions":
{"name":{"name": "name", "description":"A person's
Name", "baseType":"STRING", "ordinal":1,"alias":" 0", "aspects

":{}},

"phone":{"name": "phone", "description":"A Phone
number" , "baseType":"STRING", "ordinal":2,"alias":" 1", "aspec
ts":{}},

"age":{"name":"age", "description":"", "baseType" : "NUMBE
R","ordinal":3,"alias":" 2" ,"aspects":{"maximumValue":100.0
, 'minimumvalue":1.0}}}},

"rows":[]

}

Now this is much more revealing. We can now describe an InfoTable in clearly
defined terms.

What is an InfoTable (Again)

The object declaration above is often referred to as JSON format. JSON stands for
JavaScript Object Notation and is also a valid way to declare objects in JavaScript. By
looking at the JSON above you can see that an InfoTable consists of a JavaScript
Object with three properties. The important properties are .dataShape and .rows.
From the discussion above you can see that .rows is a JavaScript Array with zero
objects in it.

Now take a look at the JSON format of a DataShape. A DataShape is a JavaScript
Object with a property called .fieldDefinitions which has one property named for
each required property that must be present in any object added to the .rows array.
Each property contains an object that provides descriptive data about the data type
that this field must contain. The DataShape, in general, is used to describe the kind
of Objects that the .rows Array can contain.

If you look at the snippet, “Create Empty Info Table” now, the returned code should
make perfect sense.

var result = { dataShape: { fieldDefinitions : {} }, rows:

[1 };

This InfoTable is not very useful since its DataShape has not been assigned and it
won’t support any helper functions like AddRow() or getRow() since those functions
don’t exists on this object. This object is just data, no functions.

Playing by the InfoTable Rules

Lets create an InfoTable with a valid DataShape in a Service again and this time,
populate it with data using snippets.

// Snippet 1l.Create Info Table from selected Data Shape
var result =
Resources["InfoTableFunctions"].CreateInfoTableFromDataShape ({
infoTableName : "InfoTable",
dataShapeName : "SimpleDataShape"

)i

Now the results object has a populated result.dataShape and an empty result.rows
properties so this InfoTable is ready to have objects added to its .rows array. As we
saw above, creating a DataShape object is not trivial and the API call
CreatelnfoTableFromDataShape has just done all the work for us. Now lets add an
item to the .rows array that conforms to the SimpleDataShape using a snippet.

// Snippet 2. Create InfoTable Entry from Datashape
var newEntry = new Object();

newEntry.phone = undefined; // STRING

newEntry.age = undefined; // NUMBER

newEntry.name = undefined; // STRING

Replace the undefined objects that the snippet generates with real values.

// Snippet 2. Create InfoTable Entry from Datashape
var newEntry = new Object();

newEntry.phone ="555-555-5555"; // STRING
newEntry.age = “22"; // NUMBER

newEntry.name = “John Smith”; // STRING

or an alternative way to write this would be to just declare the object using JSON
style notation.

var newEntry = {
phone:”555-555-5555",
age:"22",
name: “John Smith”

}i

Now that you have created a JavaScript object that conforms to the DataShape, you
can add it to the .rows Array one of two ways. You could add the row by pushing it
onto the .rows array or you could use one of the InfoTable API Services in the
Resources Thing.

Two ways to add an Object to an InfoTable

Lets resume the discussion of populating an InfoTable. Below, we will create an info
table now without snippets, using the most compact notation possible and add one
object to it.

// Using the InfoTable API call, Addrow()

var myInfoTable =

Resources["InfoTableFunctions"].CreateInfoTableFromDataShape ({
infoTableName : "InfoTable",
dataShapeName : "SimpleDataShape'

)i

myInfoTable.AddRow ({
phone:”555-555-5555",
age:"22",
name:“John Smith”

IS

var result=myInfoTable; // So the service returns a value

.AddRow() will only be available if your InfoTable was created using
Resources["InfoTableFunctions"].CreateInfoTableFromDataShape() because the
returned JavaScript Object has the .AddRow/() function added to the returned
InfoTable. Here is an alternative way to make an InfoTable without using any API
calls. It also would allow you to change the DataShape of an info table on the fly.

var myInfoTable = {
rows:[],
dataShape:
DataShapes["SimpleDataShape"].GetDataShapeMetadataAsJSON()

}i

myInfoTable.rows.push({
phone:"555-555-5555",
age:"22",
name: "John Smith"

)i

var result=myInfoTable;

When you run this service, it produces a valid InfoTable but does not have the
.AddRow() function since the InfoTable was not created by the API call
Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(). The push
function comes from the JavaScript Array object and adds a new row to the Array.

Dynamically creating or modifying the DataShape of an InfoTable

In a previous section, we demonstrated that you can create an empty InfoTable with
the code below.

var myInfoTable = { dataShape: { fieldDefinitions : {} },
rows: [] };

Here there will be no helper functions such as .AddRow() available for you to use
but this is still a valid InfoTable to use anywhere in ThingWorx. Lets add an object to
this InfoTable and modify this empty DataShape on the fly to support this object.

var budgetl= { deparment:"marketing", budget:2500 };

Now we will need to add the “department” and “budget” properties to this
DataShape before we can add the budget1 object to this InfoTable. Below is the
entire example as a service. Make sure when you try it to set the output to
INFOTABLE.

var myInfoTable = { dataShape: { fieldDefinitions : {} },
rows: [] };
var budgetl= { department:"marketing", budget:2500 };

myInfoTable.dataShape.fieldDefinitions["department"] =
{

name: "department",

baseType: "STRING"
}i
myInfoTable.dataShape.fieldDefinitions["budget"] =
{

name: "budget",
baseType: "NUMBER"

}i

// Now you can add budgetl to the InfoTable.
myInfoTable.rows.push(budgetl);

// Return this InfoTable as the output
var result=myInfoTable;

Other values for "baseType" can be found in the Composer in the properties panel.
After seeing this example you can now see the potential for adding or removing
properties from DataShape at any time.

This same process can be done with the DataShape API on persisted
DataShapesthat you create in the Composer. The example below would modify an
existing DataShape called TestDataShape giving all the objects it describes two new
properties.

DataShapes|["TestDataShape"].AddFieldDefinition

{
name: "department" ,
dataShape: "department" ,
type: "STRING"
}
)7
DataShapes|["TestDataShape"].AddFieldDefinition(
{
name: "budget" ,
dataShape: "budget",
type: "NUMBER"
}

)i
What is the best way to manipulate an InfoTable?

Using the InfoTableFunctions is the preferred way to construct InfoTables as the
InfoTables they create will have helper functions that avoid you ever having to
access the .rows property directly. Below is a table that demonstrates these helper
functions versus manipulating the .rows array directly

API Created InfoTable Operations Manually Created InfoTable

Operations

myInfoTable.AddRow({ myInfoTable.rows.push({

phone: "555-555-5555", phone:"555-555-5555",

age:"22", age:"22",

name: "John Smith" name: "John Smith"

}) })

myInfoTable.getRow(0) myInfoTable.rows[0]

myInfoTable.RemoveRow(rowIndex) ; myInfoTable.rows.splice(rowIndex,
1);

myInfoTable.getRowCount () myInfoTable.rows.length

In each case above, using an API constructed InfoTable prevents you from having to
access the .rows property or even being aware it exists. Discussing this alternative
method is really only useful as a learning exercise.

How do you remove all the objects from an InfoTable?

This may seem too simple for its own section but the last thing you should try to do
is call myInfoTable.RemoveRow() from a for loop to remove all its items. Never
remove objects from an array while iterating it like this because it size is shrinking
on each pass of the loop and you will get an index out of bounds exception.

// '11 Never do this 1!!!

for(var index=0;index< myInfoTable.getRowCount () ;index++){
myInfoTable.RemoveRow(index) ;

}

Do something like this

while(myInfoTable.getRowCount()>0){
myInfoTable.RemoveRow(0) ;

}
or even this if you don’t have any other references directly to the rows array.

myInfoTable.rows=[];
Creating InfoTables directly from DataShapes

[t turns out there is a handy function called CreateValues() that is present on the
DataShapes you define that will produce an InfoTable to contain objects with that
shape. Here are some examples.

// Use the global DataShapes collection to find your
// SimpleDataShape thing and call .CreateValues() on it.

var result=DataShapes["SimpleDataShape"].CreateValues();

Result now contains an empty InfoTable ready to receive objects with the
DataShape “SimpleDataShape”.

But why stop there? Lets use another version of this function to both create and
populate your InfoTable with an initial object using CreateValuesWithData().

var result = DataShapes["SimpleDataShape"].CreateValuesWithData(

{
values: {
phone:"666-666-6666",
age:"35",
name: "Will Smith"
}
}

)i

Result now contains a valid InfoTable with one row in it, constructed from a
DataShape.

What can | do with InfoTables?
You can do many useful things with InfoTables. Here are some examples.

* Some ThingWorx services require an InfoTable with one item in them as
their only input parameter.

* InfoTables can be displayed in the Grid Widget in a mashup

* InfoTables are a Thing property base type. That means that you can declare
properties that are collections of a DataShape types instead of just using
Strings or Numbers. If you configure them as Persistent then the contents of
the InfoTable will be saved permanently.

* InfoTables created within a service call can be manipulated, searched and
filtered allowing your service to perform custom operations on InfoTable
data.

* InfoTables can be converted into XML documents for the creation of Web
Services.

Some Examples
Adding an object based on a DataShape to a Stream.

A Stream is a sequential persisted collection of objects of a particular DataShape
with a timestamp, location and collection of tags for each added object. Create a
Stream called SimpleDataStream which uses SimpleDataShape as its DataShape with
the composer. Now the following code will log an object to this stream.

var params = {
[

tags : 1,

timestamp : new Date(), // The time now
source : me.name, // The name of thing that creates this entry
values : DataShapes["SimpleDataShape"].CreateValuesWithData(

{

values: {
phone:"666-666-6666",
age:"35",
name: "Will Smith"

}
),
location : {latitude:0,longitude:0,elevation:0,units:"WGS84"}

}i

Things["SimpleDataStream"].AddStreamEntry(params);

Now that you know more about InfoTables, the example above should become clear.
Here, this service requires the parameter, values, which is in InfoTable containing
objects that are based on the DataShape the stream expects to store. We use the
DataShape to create this InfoTable.

The Stream itself also implements a service called CreateValuesWithData() which
does the same thing so Things["SimpleDataStream"].CreateValuesWithData() would
have worked just as well to construct the InfoTable.

Displaying an InfoTable in a Mashup using a Grid Widget

By now you should be getting quite comfortable creating InfoTables. Lets create a
Service that returns an InfoTable containing three objects based on the

SimpleDataShape we have been using all along.

Create a new Thing based on GenericThing called InfoTableTestThing. Create a
service on this thing called GetPeople.

New Service ? Local (JavaScript) ~

Service Info Inputs/Outputs Snippets Me Entities

Name @ GetPeople

Description ?

Category ?

Async ?

Have it output an InfoTable based on SimpleDataShape.

.,

New Service ? Local (JavaScript) v

Service Info Inputs/Qutputs Snippets Me Entities
Inputs 4 Adc

Name Actions

No Inputs

Outputs 2
Name ? result

Description ?

Base Type 2 |{] INFOTABLE ~

Data Shape: | ? SimpleDataShape %

Now the service Javascript should look like this.

var myInfoTable= DataShapes["SimpleDataShape"].CreateValues();
myInfoTable.AddRow (
{phone:"666-666-6666",
age:"35",
name:"Will Smith"

)i
myInfoTable.AddRow (
{phone:"555-555-1212",
age:"21",
name:"Bill Smith"
)i
myInfoTable.AddRow (
{phone:"222-555-5555",
age:"12",
name: "Phil Smith"
)i

var result=myInfoTable;

When you test this service, you will get a formatted table as a result.

GetPeople - Test Service

U unaer

Inputs: Results:

No inputs name phone age
Will Smith 666-666-6666 35
Bill Smith 555-5565-1212 21

Phil Smith 222-555-8885 12

Now create a Mashup called PeopleGridMashup. It contains only a single grid
widget. Add a reference to the InfoTableTestThing Service GetPeople. Make it

Mashup Loaded.

Add Data

Select Entity iy InfoTableTestThing % Dynamic |2 Selected Services

. § Entity Type Entity Name Service Mashup Loaded?
Selact Services GetP

Things InfoTableTestThing GetPeople v
& GetPeope

]
& GetPermissionsForCurrentUser
%7 GetPermissionsForGroup [5]
%7 GetPermissionsForUser

Now Bind All Data to the grid by dragging and dropping it.

TAFEIEN = N EETY Default Language

Category | &/ Must be bound to data
Grid *

@ Parameters
7| Grid K

& Returned Data
- @ All Data
- @ Selected =)

Here

Drag All Data from

To Here and Bind to
Data

----- . o6
= i nni s

x Name Value
¥ 70D
Name Value
i Grid-1
B Grid
= Type Grid ’ 1
-r- DisplayName Gra-1
- Description

Save and view the Mashup.

artad in thie tagk
ected in this test

Remove

Show/Hide Log Show/Hide Debug Info w Reload

Name Phone
Will Smith 666-666-6666
Bill Smith 555-555-1212
Phil Smith 222-555-5555

Default

Age

Declaring a Thing Property of Base Type InfoTable

H Fullscreen M

So far, we have been creating InfoTables from scratch but if we want them to be
persistent, they must be stored either in a Stream, DataTable or as the Property of A
Thing. Since Streams and DataTables are really a topic for their own discussion, lets
create a thing that uses an InfoTable as one of its properties. Create the

PeopleGroupThing shown below.

4 | i New Thing - 4 b %

@ Newhibine Cancel Edit ToDo

o General Information 2

T General Information
Name | ? PeopleGroupThing
I Subscripti Description | 2
] Home M;
Tags | 2
@i L

Thing Template | 2 & GenercThing %

Implemented Shapes (2 |

Active | ?

Home Mashup | ?

Avatar | ?

Published | ?

identifier | ?

Last Modified Date | 2

Value Stream | ?

© More ~

Browse...

No date and time selected

Now declare two groups, groupA and groupB as properties of PeopleGroupThing
and make them Persistable and make sure to specify the DataShape

SimpleDataShape.

4 | & New Thing - 4 %

ENTITY INFORMATION Properties 4 Add My Property | v Manage Bindings
[} | Information

S S S S N

New Property My Property ~

© More v

4/ Edt X Delete . Dupicate

General Property Info 7 BaseType Info ?

Aspects ?
Name 2 groupa Base Type | 2 (i INFOTABLE ~ Persistent | 2 v
Read-only |2
Description (2 Data Shape: |2] SimpleDataShape %
Logged | 2

Infotable Type |2 Just Infotable v
Data Change Info 2

Category (2

Has Default Value ?

Data Change Type |2

Value v
Nerts 7

/i Manage Alerts

Enabled? Type Config Name Desc

Then make an identical property called groupB. When done your properties should
look like this.

4% | & PeopleGroupThing *

ﬁ PeopleGroupThing 2 Edi

& More v
ENTITY INFORMATION Properhes ?
@ General Informa
Name Type Alerts Additional Info Detault Value Value L' DataChange H R®RE
|| groupA 0 Alerts SimpleDataShape Infotable Set VALUE 1=
|| groupB 0 Alerts SimpleDataShape Infotable Set | VALUE

« {¥ GenericThing @ (ThingTemplate) - Properties
P Generic Properties

Now lets add some entries to these InfoTables, this time using the Composer. Push

the Set button on groupA, above. You will see the form below. The Add button will
allow you to add as many new entries as you like.

Set value of property: groupA

 Acd X Delete
name phone age

Wil Smith 555-555-5555 21

And now add one person to groupB.
Set value of property: groupB
% Add X Delete
name phone age
John Smith 215-666-5555 50
Cance ﬂ

These InfoTables will be automatically persisted and can be manipulated using all
the methods we have discussed above and new ones we will talk about below.

Operations that can be performed on InfoTables

Once you have data in your InfoTables they can be easily searched, filtered or
merged using operations in the InfoTable API. All the examples below are written
as if they were Services in the previously created thing so that me.groupA and
me.groupB already exist as persisted InfoTables.

Sorting An InfoTable by any Column

// Create a new InfoTable containing all rows
// But now reordered Alphabetically by the name property
var result = Resources["InfoTableFunctions"].Sort(

{
sortColumn: "name",
t: me.groupA,
ascending: true

}

)i
Filtering An InfoTable by any Column

// Create a new InfoTable containing only rows

// whoes name property is exactly “Will Smith”

var result = Resources["InfoTableFunctions"].EQFilter ({
t: me.groupA ,
value: "Will Smith" ,
fieldName: "name"

}):
// One row will be in the new InfoTable

Rather than create an example for each kind filter function available, here is a list
you can try out yourself with explanations.

\ Filter Function Description ’

GEFilter Filters source InfoTable for a column values greater than or
equal to a value.

GTFilter Filters source InfoTable for a column values greater than a
value.

LEFilter Filters source InfoTable for a column values less than or
equal to a value.

LikeFilter Filters by a Like Criteria Pattern

LTFilter Filters source InfoTable for a column values less than a
value.

MissingValueFilter Filters by columns in which rows have missing or
undefined values

NearFilter A Geographic Radius Filter that operates on Columns of the
Base Type “Location”

NEFilter Finds all rows where a column is not equal to a value.

RegexFilter Performs a filter on a column by applying a rule written in

the Regular Expression Language. See
http://en.wikipedia.org/wiki/Regular_expression

SetFilter Same as the EQFilter except the criteria can be a comma
separated list of matching values.

TagFilter Searches the Tags applied to each row of the info table and
filters out those that do not match

Querying for Rows in an InfoTable

An InfoTable query allows you to perform multiple sorts and filters at the same time
by constructing a query object as your criteria. We don’t have an InfoTable large
enough to perform a good demonstration of this feature but lets assume that
me.groupA contains 100+ people in it and we want to write a Service that finds all
members younger than age 20 and sort the results by age.

var query = {
sorts:
[
{

fieldName: "age",
isAscending: false

}
1,
filters: {
type: "AND",
filters:
[
{
type: "LT",
fieldName: "age",
value: 20
}
]
}
}i
var result = Resources|['InfoTableFunctions'].Query(
{
query : query,
t : me.groupA
}

)i

Note that the properties sorts and filters are arrays and could contain more than
one criteria as well. Additional objects in the sorts array will influence sort order by
sorting values that are not unique according to the previous sort criteria. Multiple
filter criteria in the filters array would Unions (or) or Intersections (and) of the
results of their individual filtered InfoTables. More on filtering with sets will be
covered in the next section.

Performing Set Operations on InfoTables

Set operations involve processing, comparing, extracting and combining one or
more InfoTables to produce a new result.

Lets perform a Union between me.groupA and me.groupB which will produce a new
InfoTable containing all Members.

// The joining or union of two InfoTables
var result = Resources["InfoTableFunctions"].Union(

{
t2: me.groupB ,
tl: me.groupA

}

// result now contains three rows or all the rows
// from groupA and groupB

Other useful set operations are...

\ Set Function Description]
Distinct Removes duplicate rows based on the value of a column
Interpolate Performs a statistical interpolation on time based data
producing a new InfoTable by sampling the original InfoTable

Intersect If given two InfoTables, produces a new InfoTable containing
only the rows that are present in both.

Pivot Creates a Pivot table. See
http://en.wikipedia.org/wiki/Pivot_table for more information

TopN Returns the Top N rows of the InfoTable or N most recently
added rows of the InfoTable

Union As demonstrated above, combines two InfoTables based on a
common DataShape

TimeShift Shifts all the specified timestamp fields in the InfoTable

backwards or ahead by seconds.

Creating Calculated columns in InfoTables

The DeriveFields function can be used to create calculated columns much in the
same way a spreadsheet can produce new columns whose values are the result of a
calculation performed on other row values.

var result = Resources["InfoTableFunctions"].DeriveFields(
{
t: me.groupA /* INFOTABLE */,
columns: "TenTimesAge" /* STRING */,
types: "NUMBER" /* STRING */,
expressions: "age*10" /* STRING */

Here is a screenshot of the resulting InfoTable when this service is run.

r

derivedExample - Test Service

Inputs:

No inputs

Conclusion

Now you know a lot more about InfoTables and how they can be created and used.

Results:

TenTimesAge name phone age
210 Will Smith 555-8585-5555 21
320 Phil Smith 222-222-5555 32

InfoTables are the Data Structure used to insert and extract information from
DataTables, Streams and ThingWorx’s own APIs for configuration of Bindings,

Security and Taging as well. They are also used to provide information about how a

table should be rendered as an HTML document. Understanding InfoTables will

enhance your ability to use other API calls in your projects and understand Services

that are built on top of InfoTables as well.

