

ThingWorx DevOps with Jenkins

Costin Badici
Principal IoT/Analytics Field Engineer
cbadici@ptc.com

mailto:cbadici@ptc.com

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively “PTC”) are subject to

the copyright laws of the United States and other countries and are provided under a license agreement that restricts copying,

disclosure, and use of such documentation. PTC hereby grants to the licensed software user the right to make copies in printed form

of this documentation if provided on software media, but only for internal/personal use and in accordance with the license

agreement under which the applicable software is licensed. Any copy made shall include the PTC copyright notice and any other

proprietary notice provided by PTC. Training materials may not be copied without the express written consent of PTC. This

documentation may not be disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or

made publicly available by any means without the prior written consent of PTC and no authorization is granted to make copies for

such purposes.

Information described herein is furnished for general information only, is subject to change without notice, and should not be

construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies that may

appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade secrets and

proprietary information, and is protected by the copyright laws of the United States and other countries. It may not be copied or

distributed in any form or medium, disclosed to third parties, or used in any manner not provided for in the software licenses

agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the piracy of PTC software

products, and we pursue (both civilly and criminally) those who do so using all legal means available, including public and private

surveillance resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and transmit data on

users of illegal copies of our software. This data collection is not performed on users of legally licensed software from PTC and its

authorized distributors. If you are using an illegal copy of our software and do not consent to the collection and transmission of such

data (including to the United States), cease using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND

This document and the software described herein are Commercial Computer Documentation and Software, pursuant to FAR

12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95), and are provided to the US Government under a limited

commercial license only. For procurements predating the above clauses, use, duplication, or disclosure by the Government is

subject to the restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at

DFARS 252.227-7013 (OCT’88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2) (JUN’87), as

applicable. 01012015

PTC Inc., 121 Seaport Boulevard, Boston, MA 02210 USA

ThingWorx DevOps with Jenkins

 1

Document Revision History

Revision Date Version Description of Change
14/06/2019 1.0 Initial Document
03/07/2019 1.1 Adjustments
11/07/2019 1.2 Adjustments
17/07/2019 1.3 Adjustments
16/09/2019 1.4 Adjustments
25/02/2020 1.5 Adjustments – Integration with SC and Improvements
27/04/2020 1.6 Adjustments – Setup Docker for running tests, trigger

pipeline remotely
26/08/2020 1.7 Adjustments – republished by EDC team

ThingWorx DevOps with Jenkins

 2

Document Revision History ..1
Introduction ..3
DevOps Process ..3
Configuration and Usage ..4

Prerequisites ...4
ThingWorx Jenkins Package ..4
DevOps Project in ThingWorx ..4
Configuring the Jenkins Pipeline...6
Setting up a Docker Container ..9
Build the Pipeline and View the Results ...9
Triggering the Jenkins Pipeline Remotely ... 13

Troubleshoot the ThingWorx Jenkins Pipeline ... 14

ThingWorx DevOps with Jenkins

 3

Introduction

This document describes how to use a CI/CD Jenkins Pipeline for ThingWorx, providing detailed
information about how to setup your ThingWorx instance and how to configure your Jenkins
Pipeline. The Pipeline is intended as an example / starting point for managing your DevOps in
ThingWorx and it can easily be extended. Please note that this Pipeline is not officially supported
by PTC.

DevOps Process

This section outlines the DevOps process in ThingWorx at a high-level. It is assumed that at least
a development (DEV) and test (TEST) instance have already been deployed. Typically,
customers also have an instance for UAT/performance testing (QA/UAT) and a production
instance (PROD, which is the published application).

This example also assumes there is a git repository for source control. If you are planning to use
a different source control system (or none at all), you will need to edit some of the services
provided below.

In the above diagram, you will find the main steps of the proposed Jenkins Pipeline. This Pipeline
assumes that a development sprint has finished, and testing has begun. Now it is time to decide
whether to move forward with the deployment (to PROD or a QA/UAT environment) or fix any
bugs.

In the first step, the application is exported from the DEV server. This means that your
extensions, all the entities developed in your project including system objects you have
previously developed will be exported and pushed into your git repository.

The next step is to install the application on a test server. This implies pulling the branch from
your git repository on which you pushed the project (assume we always use the master branch),
installing all the required extensions, entities related to the project, etc. There is also support
available for setting up a Docker container with ThingWorx as a test server.

The last step will involve running the tests you have previously developed (examples also shown
in the DevOps project). The output of the tests will be presented in an HTML page in Jenkins. As
an optional step, for users of ThingWorx 8.5 or higher, you can also publish your project to
Solution Central if all tests have been passed successfully. To read more about Solution Central
and how to register your instance, please visit this link.

Based on the results of the tests, you can decide to deploy the application to another
environment to perform any further tests or to go back to development and fix any bugs. This

Export
Application

(DEV)

Install
Application

(TEST)

Run Tests
(TEST)

https://support.ptc.com/help/thingworx/solution_central/en/#page/solution_central%2Fwelcome_sc.html%23

ThingWorx DevOps with Jenkins

 4

step is not presented here, but it can be easily automated using the services already developed
in the example.

Configuration and Usage

Prerequisites

For the DevOps sample project to work, it is assumed that you are using a git repository for
backup and source control purposes. Prior to importing the DevOps entities, please download
and install the Git Backup1 extension from the PTC Git Repository. Another prerequisite for the
DevOps is to have Jenkins installed. More information about how to install Jenkins can be found
here: https://jenkins.io/doc/book/installing/

Furthermore, the scripts used in the Jenkins Pipeline use cURL commands. Make sure that
cURL is available on the machine where you plan to use Jenkins. If you plan to use a test server
on Docker, make sure that you have built the corresponding Docker image on the server where
you have Jenkins installed. More information about building your Docker image for ThingWorx
can be found here.

ThingWorx Jenkins Package

The provided package has the following folder structure:

• JenkinsPipeline: contains the job that Jenkins will execute, available for both Linux and
Windows

• PipelineScripts: copy this folder to a location on the machine where Jenkins is installed.
The path to the scripts will be referenced in the Pipeline code; This folder contains
another subfolder with the Git Extension, DevOps entities and a bash script; these files
are relevant only for setting up a Docker container for running the tests

• ToImportInThingWorx: contains the entities necessary on the DEV and TEST instances in
ThingWorx

DevOps Project in ThingWorx
As a first step, go to the Import/Export menu in ThingWorx and import the DevOps related
entities.

1 The services provided in this project have been tested using the Git Backup Extension v. 1.3.1

https://github.com/PTCInc/thingworx-gitbackup-extension
https://jenkins.io/doc/book/installing/
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx%2FHelp%2FInstallation%2FThingWorxDockerGuide%2Fthingworx_docker_getting_started.html%23

ThingWorx DevOps with Jenkins

 5

Next, create a Thing based on the GitBackupTemplate, go to the Configuration tab and add the
details of your git repository. Make sure to also add a ThingWorx file repository. For testing
purposes, the services provided in this example will work when the File Repository path from the
Git thing is empty, as indicated below.

As a next step, open the DeploymentManagerThing and go to the Properties and Alerts tab.
Change the ProjectName property value to the project that you are using in your application
and also the GitThingName, whatever implements the GitBackupTemplate. Optionally, you can
change the rest of the properties such as the different paths you will use for source control, the
app key, etc.

• AppKey – Application key name that will be used by Jenkins to connect to your
environment. Needs to be the same application key on both DEV and TEST
environments

• EntitiesPath – Path on the deployment repository where the entities will be saved

• Extensions – Infotable; if left empty, all extensions from Dev will be installed on the test
system

• ExtensionsPath – Path on the deployment repository where extensions will be saved

• GitThingName – Thing that will be used to connect to your Git repository

• PermissionsPath – Path on the deployment repository where the user permissions will be
exported

• ProjectName – Entities belonging to this project will be exported and imported on the
test system

• SystemObjectsPath – Path on the deployment repository where the modified system
objects will be exported (these system objects cannot be added to the project and
therefore require a separate export)

• TagSystemObjects – Tag that is used for the modified system objects

ThingWorx DevOps with Jenkins

 6

Now, everything is in place for the first two stages of the pipeline, which involves packaging the
application and installing it on another environment (e.g. TEST). For these steps, you have the
option to add any missing dependencies to your project, to include the passwords in the export,
and to remove the old entities from the test/target server.

The next phase involves testing your application. Both unit as well as integration tests can be
automated via ThingWorx services. This example establishes a common framework for testing
by providing a TestingTS Thing Shape with overridable services. These services have the
following role:

- Create the test data – Should be overridden to create any test data. This is
optional.

- Execute different tests – ExecuteTest service should be overridden. All tests are
executed sequentially to build a test results Infotable. All tests should be marked
with the Category “Test”

- Delete test data – Should to be overridden to delete the test data
- Run all tests – Needs to be overridden to execute all tests. This service will create

the test data (optional), execute all the tests (services marked with the “Test”
category) and return the result Infotable. Optionally, the test data can be deleted

- RunAllTestsFormatResult – Service is not overridable, will run all tests, and convert
the result to HTML. This is the service executed in the last step of the Jenkins
Pipeline

- FormatTestResults – Non-overridable service for formatting the test results from
Infotable to HTML

****If the TestResultData datashape is modified, please modify the service
FormatTestResults accordingly in the TestingTS***

The developers should implement one or more things using the TestingTS and override these
services. In the end, we should have a single test thing executing all the tests.

An example is provided in TestExample1 – RunAllTests. To view the results on a correctly
formatted HTML page in Jenkins, Jenkins will call the service RunAllTestsFormatResult. If you
plan to modify any fields from the TestResultData Data Shape, then please also adjust this
service accordingly.

Please note that in Jenkins, with the provided example, all tests are executed as a single
operation (sequentially) so it is therefore important to wrap all of them in a single service, such as
RunAllTests, even if you plan to run more tests developed in different entities.

Please consider you also have the option to publish your project to Solution Central if all tests
have run successfully.

Configuring the Jenkins Pipeline

After installing Jenkins, please ensure that you have the following plugins installed:

- Pipeline
- Pipeline Utility Steps
- HTML Publisher

ThingWorx DevOps with Jenkins

 7

- Permissive Script Security2

The easiest method to install Jenkins plugins is from the web UI, by accessing Manage Jenkins
– Manage Plugins. Here you can find other methods for installing plugins:
https://jenkins.io/doc/book/managing/plugins/

As a next step, copy the corresponding Jenkins project folder3 (depending on whether you are
on Windows or Linux), “TwJenkins”, to the path: JENKINS_HOME/jobs/.

Ensure that the TwJenkins/config.xml is not a Read-Only file so that you can edit the file from
Jenkins.

In addition to this, please add the following option for Java:

-Dpermissive-script-security.enabled=true

On Windows, this should be added in %JENKINS_HOME%\jenkins.xml in the following section:

On Linux (CentOs), go to /etc/sysconfig and edit the Jenkins file by adding this argument to
JENKINS_JAVA_OPTIONS.

Restart Jenkins and then login to the web UI. You should now see the TwJenkins job available.

Select the job and then click on Configure:

Go to the Pipeline script section and edit the environment
variables used throughout the pipeline script to execute different
commands in ThingWorx (see image).

2 Some operations from the Jenkins Pipeline will require administrator approval, such as deleting

a file. These approvals are granted by going to Manage Jenkins – In-Process Script Approvals.

The signatures approved to run this Jenkins Pipeline are:

• method groovy.lang.GroovyObject getProperty java.lang.String

• method java.io.File delete

• new java.io.File java.lang.String

• staticMethod org.codehaus.groovy.runtime.DefaultGroovyMethods append java.io.File

java.lang.Object

• staticMethod org.codehaus.groovy.runtime.ScriptBytecodeAdapter unaryPlus

java.lang.Object
3 TwJenkinsPackage/JenkinsPipeline/Windows/TwJenkins for Windows or

TwJenkinsPackage/JenkinsPipeline/Linux/TwJenkins for Linux

https://jenkins.io/doc/book/managing/plugins/

ThingWorx DevOps with Jenkins

 8

• DEV – protocol://hostname for your development instance

• TEST – protocol://hostname for your test instance

• TEST_THING – A single thing from the test instance that will execute all tests using the
RunAllTestsFormatResult service

• SETUP_DOCKER – Either true or false, depending on whether you would like to run a
Docker container with ThingWorx for your automatic tests; in case you set this up to true,
make sure you have previously built the Docker image on the server where Jenkins is
running

• INSTALL_EXTENSIONS – Whether to install the extensions as well. Should be set to ‘true’
whenever you have updated some extensions on the DEV server or when you are
importing the application for the first time on the TEST server

• ADD_DEPENDECIES - If set to true, will add any missing dependencies to the project
before the Package step; should be set to true only for ThingWorx 8.5 or higher

• INCLUDE_PASSWORDS – Option to include passwords; please note that setting this
option to true will mean that the passwords will be exported in clear text. It is not
recommended to turn this setting to true

• REMOVE_OLDPROJECT – If set to true, will erase the project on the target (TEST)
instance before importing the application; this ensures that old entities are removed

• PUBLISH_TO_SC – If all tests have passed successfully, user has the option to publish
the solution to Solution Central; this option is applicable for ThingWorx 8.5 or higher

• ARTIFACTID – Artifact ID for the solution published to Solution Central; this option is
applicable for ThingWorx 8.5 or higher

• GROUPID – Group ID for the solution published to Solution Central; this option is
applicable for ThingWorx 8.5 or higher

• PACKAGE_VERSION – Package version for the solution published to Solution Central;
this option is applicable for ThingWorx 8.5 or higher

• MIN_PLATFORM_VERSION – Minimum ThingWorx Platform version for the solution
published to Solution Central; applicable for ThingWorx 8.5 or higher

• SCRIPT_PATH – The path on the machine where the batch/shell scripts that Jenkins will
execute are present

• TEST_RESULT_PATH – A path on the machine where Jenkins will save the result of the
test executions. This path needs to include the provided CSS folder for the result to be
properly formatted in an HTML page. In the initial package, the CSS folder is a package
of the PipelineScripts folder

• DOCKER_PATH – The path where the ThingWorx Docker files are available, including
the “docker-compose.yml” file

• APPKEY – The app key Jenkins will use to authenticate to ThingWorx. This app key is
already provided in the DevOps project, but you can replace it. The app key needs to be
the same on both the DEV and TEST environments. If you plan to use different

ThingWorx DevOps with Jenkins

 9

application keys, please create an additional parameter in the Jenkins pipeline and
provide it as a command line parameter in the corresponding stage in Jenkins, when
executing the batch or shell script.

Setting up a Docker Container

In some situations, you might want to use ThingWorx running on a Docker container for your
automatic tests. In this situation, you need to follow these steps:

1. Make sure you have built the Docker image for ThingWorx, following the instructions
available on the Help Center

2. In your Jenkins job configuration, make sure SETUP_DOCKER is set to ‘true’ and that the
DOCKER_PATH points to where you have your ThingWorx Docker files.

3. On your DEV server, where you have initially configured your GitBackup Thing, make
sure you add it to the DevOps project in ThingWorx and export the DevOps project
entities (binary, universal export). Place this file in the twdevopssetup folder that is
present in your PipelineScripts folder

4. Make sure that you copy the twdevopssetup folder from the PipelineScripts folder to the
DOCKER_PATH. A bash script is present in this folder that will import the Git Extension
and the DevOps entities

5. Open the bash script in edit mode and make sure all the variables have the correct
values. Make sure you adjust the values for the Git Extension name, DevOps entities file
name, ThingWorx host and port as well as the initial Administrator password

Please note that after the tests have run, the Docker container is not automatically deleted. If
you plan to reuse the same Docker container for a new round of tests, make sure to set
“SETUP_DOCKER” to false.

The current pipeline only includes a Linux Docker example, but follow the same instructions and
adjust your pipeline accordingly with a “Build Docker” stage on Windows as well.

Build the Pipeline and View the Results

Once you have done all the previous steps, you are ready to build the Jenkins Pipeline, which will
automatically export the application from DEV, push it into your git repository, import it on your
TEST environment, and perform the tests you have previously developed.

Navigate to the TwJenkins job and click on Build Now.

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx%2FHelp%2FInstallation%2FThingWorxDockerGuide%2Fthingworx_docker_getting_started.html%23

ThingWorx DevOps with Jenkins

 10

If an error occurs in the export application or import application stages, the Pipeline will fail. The
ThingWorx error will be shown in the Console Output in Jenkins:

Once your build is finished, if successful, an HTML report will be generated with the results of the
test that you can directly view in Jenkins (after the first build, a window reload is necessary):

ThingWorx DevOps with Jenkins

 11

Click on Results ThingWorx Test to view the report:

Each build will have a Results ThingWorx Tests HTML page displayed. On the project page you
will be able to view the results from the latest build. To view additional information, go back and
click on the build number and then click on Console Output. The Console Output is particularly
important if you have issues with your build:

ThingWorx DevOps with Jenkins

 12

You can also click on the Pipeline Steps to view the different steps performed by the Jenkins
pipeline and their execution time:

ThingWorx DevOps with Jenkins

 13

You can also track your build using the Blue Ocean UI. A prerequisite for this is installing the Blue
Ocean plugin. If you have already installed this plugin, you can open the Blue Ocean UI to view
information about your build:

If running a Docker container from the Pipeline, an additional Pipeline stage will appear, like in
the picture below:

Triggering the Jenkins Pipeline Remotely

The Jenkins Pipeline can be triggered via the UI, by clicking on Build Now or remotely with an
HTTP request. More information about triggering a Jenkins Pipeline remotely can be found here.

You can trigger the Jenkins Pipeline from ThingWorx, using the Content Loader Functions. An
example snippet can be found below:

var result = Resources["ContentLoaderFunctions"].PostJSON({

 url: "http://192.168.189.135:8080/job/TwJenkins/build" /* STRING */,

 timeout: 300 /* NUMBER */,

 password: "110a43edbbfabf6fd594ee7b93a0b57f5f" /* STRING */,

 username: "admin" /* STRING */

});

https://wiki.jenkins.io/display/JENKINS/Remote+access+API

ThingWorx DevOps with Jenkins

 14

The password is an access token that needs to be generated in Jenkins. In the upper corner
where the username appears in Jenkins, expand the dropdown and click on Configure. Then go
to the API Tokens section and generate a new token.

Troubleshoot the ThingWorx Jenkins Pipeline

You might have different issues when building the Pipeline for the first time. Please find a list of
possible issues that you may encounter below:

1. Missing plugins

Certain plugins are required to build this Pipeline successfully:

- Pipeline
- Pipeline Utility Steps
- HTML Publisher
- Permissive Script Security

2. cURL command is not recognized

In this situation you need to install cURL commands on the machine where Jenkins is
installed. You can find information about installing cURL here

3. ThingWorx related issues

If an error is generated in one of the services that Jenkins calls in ThingWorx, please test
the services outside the Jenkins environment to ensure they are working correctly. Also,
ensure the custom tests are not producing any errors

4. Script approvals

The first time you run the Jenkins Pipeline, an error might occur related to the script.
Some method signatures require administrator approval. To do this, go to Manage
Jenkins – In Process Script approvals and approve the method signatures.

The following method signatures are used in the Pipeline and require approval:

• method groovy.lang.GroovyObject getProperty java.lang.String

• method java.io.File delete

• new java.io.File java.lang.String

https://develop.zendesk.com/hc/en-us/articles/360001068567-Installing-and-using-cURL

ThingWorx DevOps with Jenkins

 15

• staticMethod org.codehaus.groovy.runtime.DefaultGroovyMethods append
java.io.File java.lang.Object

• staticMethod org.codehaus.groovy.runtime.ScriptBytecodeAdapter unaryPlus
java.lang.Object

5. Certificate verification error in Jenkins

To work with self-signed certificates, add the “-insecure” option to the cURL command in
the batch or shell script. For example, for editing the Package App step, edit
“packageApp.bat” or “.sh” and add “-insecure”: (e.g. curl -X POST -insecure)

6. Failed to write to the PipelineScripts folder

The result of each stage is written to the PipelineScripts folder. Make sure that the
Jenkins user has permissions to write to this folder.

