
� 		

Getting	Started	with	The	ThingWorx	C	
SDK	on	the	Raspberry	PI	
Setting	up	your	.irst	Raspberry	PI	can	be	a	challenge.	Combining	it	with	setting	up	
and	using	the	ThingWorx	C-SDK	to	expose	some	simple	properties	that	can	be	found	
on	this	device	is	what	will	be	covered	in	this	discussion.	This	document	was	
compiled	as	the	author	worked	through	this	process.	This	procedure	may	change	
over	time	as	the	SDK	evolves.	

Audience	
A	ThingWorx	developer	who	has	had	some	exposure	to	the	ThingWorx	Composer	
and	modeling.	Having	created	an	edge	application	using	another	SDK	may	also	be	
useful	since	this	document	does	not	go	into	detail	on	the	process	of	binding	a	remote	
things.	You	should	have	a	Raspberry	PI,	a	display	and	a	keyboard	already	attached	
and	a	blank	SD	card	(or	Micro	SD	card).	Having	some	experience	with	the	unix	
command	line	shell	and	the	C	programming	language	would	be	helpful	but	examples	
will	provide	the	speci.ic	commands	required	to	complete	this	example.	

Contents	
Audience	 1	..
Contents	 1	...
NOOBS	is	not	just	for	noobs	 2	..
Accessing	Your	Raspberry	PI		 2	...
Getting	the	C	SDK	 3	...
Extracting	the	C	SDK		 6	...
The	Steam	Example	 7	..
Compiling	the	Steam	Example	 8	...
Con.iguring	the	Steam	Example	 9	..
Changing	the	Hostname,	AppKey	and	Port	 9	...
Disabling	HTTPS	(If	Required)	 10	...

Creating	your	own,	Custom	Application	 11	...
Writing	Your	Own	Program	 11	..
Conclusion	 17...

NOOBS	is	not	just	for	noobs	
Lets	assume	you	have	just	purchased	your	.irst	Raspberry	PI	and	a	blank	SD	card.	
You	also	have	a	USB	mouse	and	keyboard	attached	and	an	adequate	power	supply	
(between	1.8	to	2.0	Amps	at	5	volts).	You	have	also	hooked	it	up	to	an	HDMI	monitor	
(like	a	TV	set).		For	help	with	these	basic	issues	check	out	the	“Getting	Started”	video	
at	https://www.raspberrypi.org/help/quick-start-guide/.	
NOOBS	is	an	easy	to	use	operating	system	installer	for	your	PI.	It	can	be	downloaded	
at	https://www.raspberrypi.org/downloads/noobs/	or	by	following	the	links	on	the	
“Getting	Started”	page.	Download	the	NOOBS	Of.line	and	network	install	using	your	
web	browser.	Once	this	download	is	complete,	extract	this	zip	.ile	on	your	hard	disk.	
Everything	inside	the	expanded	folder	should	be	copied	to	your	new,	empty	SD	card.	
This	process	is	described	here:	https://www.raspberrypi.org/help/noobs-setup/	.	
Once	your	have	copied	everything	in	this	folder	to	your	SD	card	you	should	eject	it	
from	your	computer	and	insider	it	into	the	slot	on	the	underside	of	your	PI.	Now	
plug	in	your	power	supply	and	NOOBS	will	con.igure	your	PI	the	.irst	time	it	boots	
up.	
An	important	thing	to	remember	when	viewing	the	noobs	setup	video	is	that	the	
presenter	is	in	the	UK.	If	you	are	in	the	US	or	another	country	you	should	choose	
your	native	keyboard	format	before	choosing	to	install	the	Raspberian	Operating	
system.	

Accessing	Your	Raspberry	PI		
Assuming	everything	has	gone	smoothly	with	your	NOOBS	install,	you	may	already	
.ind	yourself	booted	into	the	graphical	user	interface	for	your	PI.	If	you	have	not,	you	

https://www.raspberrypi.org/help/quick-start-guide/
https://www.raspberrypi.org/downloads/noobs/
https://www.raspberrypi.org/help/noobs-setup/

may	have	to	log	from	a	command	prompt	and	start	the	user	interface	manually.	If	
asked	for	a	username	and	password	use	the	defaults	which	are:	
username:	pi	
password:	raspberry	
Once	your	are	logged	in,	if	the	graphical	user	interface	has	not		started	type	the	
command	“startx”	and	hit	return.	Either	way	you	should	now	be	looking	at	an	screen	
that	looks	similar	to	what	you	see	below.	

Ge>ng	the	C	SDK	
On	a	computer	other	than	your	PI,	enter	the	URL,	http://
marketplace.thingworx.com/	to	get	to	the	ThingWorx	Marketplace	and	select	the	
“Browse”	button.	

Now,	select	“Edge	SDKs”	as	shown	below.	

http://marketplace.thingworx.com/

Now	select	the	C	SDK.	

Next,	choose	the	download	button.	You	will	be	asked	to	log	into	the	marketplace.	If	
you	don’t	already	have	a	log	in,	follow	the	instructions	provided	to	get	one.	

Once	you	have	downloaded	the	C	SDK,	you	will	have	to	transfer	it	to	your	PI.	The	
fastest	way	to	do	this	in	Windows	is	to	use	a	program	called	winscp	(https://
winscp.net/eng/download.php).	Choose	the	“Installation	Package”	and	install.	Once	
you	have	it	running,	you	will	need	to	.ind	the	IP	address	of	your	PI	to	proceed.	
On	your	Raspberry	PI	type	the	ifcon.ig	command	to	get	your	IP	address:	

pi@raspberrypi:~ $ ifconfig

eth0 Link encap:Ethernet HWaddr b8:27:eb:03:a2:31

 inet addr:192.168.10.24 Bcast:192.168.10.255 Mask:255.255.255.0

 inet6 addr: fe80::4ebe:e9d6:4b89:4263/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:32162 errors:0 dropped:27 overruns:0 frame:0

 TX packets:12213 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:14547528 (13.8 MiB) TX bytes:7050031 (6.7 MiB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:242 errors:0 dropped:0 overruns:0 frame:0

 TX packets:242 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:18936 (18.4 KiB) TX bytes:18936 (18.4 KiB)

Here	the	IP	address	is	marked	in	red	above.	eth0	is	the	wired	network	connection.	If	
you	are	using	wireless	you	may	have	a	wlan	interface.	Record	this	IP	address	for	use	
in	winscp.	The	winscp	dialog	is	in	the	.igure	below.	Once	you	.ill	in	the	.ields	hit	the	
“Login”	button.	Say	“Yes”	to	any	“Add	hosts	to	key	cache	messages”.		

https://winscp.net/eng/download.php

Once	you	are	logged	in,	.ind	your	downloaded	C	SDK	.ile	which	may	look	something	
like	“MED-61061-CD-055_M010_ThingWorx-C-SDK-1-2-1-261-1.zip”	on	the	left	
hand	.ile	list	and	drag	it	onto	the	right	list	which	is	the	home	directory	of	your	PI.	
If	you	use	a	Mac,	the	equivalent	tool	to	winscp	is	called	Cyberduck	(https://
cyberduck.io)	.	It	will	allow	you	to	use	SCP	to	transfer	the	C	SDK	to	your	PI	in	a	very	
similar	manner.	Once	installed,	select	File…>New	Browser.	Select	the	“Open	
Connection”	button	in	the	tool	bar	and	.ill	in	this	dialog.	Then	hit	the	“Connect”	
button.	You	will	then	be	able	to	drag	the	C-SDK	zip	.ile	in	a	similar	manner	to	winscp.	

ExtracDng	the	C	SDK		
Once	you	get	the	C	SDK	zip	.ile	into	your	PI	things	get	easier.	You	will	be	working	
with	the	command	line	for	these	next	steps	so	open	one	from	the	bar	across	the	top	
of	your	PI’s	user	interface.	

	We	will	be	working	with	the	PI	command	line	for	most	of	the	rest	of	this	tutorial.	If	
you	are	not	experienced	with	the	PI	command	line	interface,	try	going	over	this	unix	
tutorial	here	to	get	up	to	speed.	http://www.ee.surrey.ac.uk/Teaching/Unix/	.	
Lets	make	sure	that	your	SDK	.ile	is	on	your	PI.	Type	the	command	“ls”	and	hit	enter.	

https://cyberduck.io
http://www.ee.surrey.ac.uk/Teaching/Unix/

pi@raspberrypi:~ $ ls

Desktop Downloads MED-61061-CD-055_M010_ThingWorx-C-
SDK-1-2-1-261-1.zip Pictures python_games Videos

Documents Music

Here	you	can	see	I	have	an	SDK	zip	document	called	MED-61061-
CD-055_M010_ThingWorx-C-SDK-1-2-1-261-1.zip.	Lets	unzip	it	with	the	command,	
unzip.	
pi@raspberrypi:~ $ unzip MED-61061-CD-055_M010_ThingWorx-C-
SDK-1-2-1-261-1.zip

Archive: MED-61061-CD-055_M010_ThingWorx-C-SDK-1-2-1-261-1.zip

 creating: tw-c-sdk/

 creating: tw-c-sdk/doc/

 inflating: tw-c-sdk/doc/mainpage.md……

The	output	goes	on	to	list	all	the	.iles	being	extracted.	If	we	use	the	ls	command	
again	we	now	see…	
pi@raspberrypi:~ $ ls

Desktop Documents Downloads MED-61061-CD-055_M010_ThingWorx-C-
SDK-1-2-1-261-1.zip Music Pictures Public python_games Templates
tw-c-sdk Videos

Where	you	will	see	that	a	new	directory	called	“tw-c-sdk”	is	now	present.	We	now	
have	a	C	SDK	on	our	PI	to	work	with.	

The	Steam	Example	
To	get	a	feel	for	the	process	of	exposing	data	to	ThingWorx,	lets	compile	an	example	
that	comes	with	the	SDK.	The	Steam	example	exposes	a	few	simple,	simulated,	
properties	to	the	server.	We	will	start	my	looking	in	the	tw-c-sdk/examples/
SteamSensor	directory.	Lets	take	a	look	at	it	in	the	terminal	window.	
pi@raspberrypi:~ $ cd tw-c-sdk

pi@raspberrypi:~/tw-c-sdk $ ls

build doc examples src version.txt

pi@raspberrypi:~/tw-c-sdk $ cd examples

pi@raspberrypi:~/tw-c-sdk/examples $ ls

SteamSensor SteamSensorWithFileTransferAndTunneling
SteamSensorWithOpenSSL SteamSensorWithThreads

SteamSensorWithFileTransfer SteamSensorWithMinimalFootprint
SteamSensorWithSubscribedProperties

pi@raspberrypi:~/tw-c-sdk/examples $ cd SteamSensor

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor $ ls

linux osx src win32

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor $ cd src

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/src $ ls

main.c

The	main.c	.ile	contains	the	steam	sensor	program	which	will	create	and	update	
properties	on	the	ThingWorx	server.	
You	can	view	the	program	by	typing	the	command	“nano	main.c”.	Nano	is	a	terminal	
text	editor.	When	done	you	can	exit	nano	with	the	ctrl-x	command.	You	can	also	view	
this	.ile	with	a	graphical	editor	by	using	the	command	“idle	main.c”.	

Compiling	the	Steam	Example	
Next,	we	need	to	compile	this	program	and	at	the	same	time,	compile	the	C	SDK	
targeting	the	linux	arm	platform	for	the	Raspberry	PI.	Below	is	the	terminal	output	
for	moving	from	the	src	directory	to	the	linux	directory	where	we	will	be	running	
the	linux	“make”	command	to	compile	main.c	into	a	binary	executable	program	for	
the	PI.	
pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/src $ cd ..

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor $ cd linux

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux $ ls

Make.CommonSettings Makefile

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux $ make
PLATFORM=gcc-linux-arm BUILD=release

Now	that	this	is	complete,	the	.inished	program	can	be	found	in	the	~/tw-c-sdk/
examples/SteamSensor/linux/bin/gcc-linux-arm/release	directory.	

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux $ ls

bin Make.CommonSettings Makefile obj

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux $ cd bin

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux/bin $ ls

gcc-linux-arm

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux/bin $ cd gcc-
linux-arm/

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux/bin/gcc-linux-arm
$ ls

release

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux/bin/gcc-linux-arm
$ cd release

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux/bin/gcc-linux-arm/
release $ ls

SteamSensor

The	compiled	program	is	called	“SteamSensor”	and	can	be	run	with	the	command	“./
SteamSensor”.	When	you	do	this,	you	will	see	the	following	output	which	indicates	
that	it	cannot	.ind	a	ThingWorx	server.	

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/linux/bin/gcc-linux-arm/release
$./SteamSensor

[FORCE] 2015-12-26 06:19:06,257: Starting up

[DEBUG] 2015-12-26 06:19:06,257: twWs_Create: Initializing Websocket Client for
localhost:443//Thingworx/WS

[DEBUG] 2015-12-26 06:19:06,257: twTlsClient_Create: Initializing TLS Client

[DEBUG] 2015-12-26 06:19:06,261: subscribedPropsMgr_Initialize: Initializing
subscribed properties manager

[TRACE] 2015-12-26 06:19:06,261: twApi_Connect: Delaying 1 milliseconds before
connecting

[DEBUG] 2015-12-26 06:19:06,263: twTlsClient_Reconnect: Re-establishing SSL
context

[DEBUG] 2015-12-26 06:19:06,264: twTlsClient_Connect: Connecting to server

[ERROR] 2015-12-26 06:19:06,264: Error intializing socket connection. Err =
111

The	program	can	be	ended	by	hitting	ctrl-c	or	typing	the	letter	q.	

Configuring	the	Steam	Example	

Changing	the	Hostname,	AppKey	and	Port	

This	tutorial	assumes	you	are	running	an	instance	of	ThingWorx	on	port	8080	of	
some	host	over	HTTP.	Be	default	this	example	assumes	you	are	running	on	localhost	
using	HTTPS.	We	will	have	to	change	this	setting.	To	make	these	changes	we	must	
edit	tw-c-sdk/examples/SteamSensor/src/main.c	and	change	some	values.	

pi@raspberrypi:~/tw-c-sdk/examples/SteamSensor/src $ nano main.c

Find	the	section	near	the	top	of	the	.ile	that	looks	like	this:	
/* Server Details */

#define TW_HOST "localhost"

#define TW_APP_KEY "e9274d87-58aa-4d60-b27f-e67962f3e5c4"

And	replace	localhost	with	the	hostname	of	your	server.	Remember,	you	can’t	use	
localhost	because	your	ThingWorx	server	is	not	located	on	your	PI.	You	must	know	
either	its	hostname	or	IP	address	and	enter	it	here.		
You	will	also	have	to	change	the	App	Key	to	a	key	that	exists	on	your	server.	Look	in	
the	Application	Keys	section	of	your	server	and	for	this	example,	choose	or	create	an	
app	key	that	has	Administrator	privileges.		
Next	we	may	have	to	change	the	port	your	ThingWorx	server	is	on.	Look	for	a	line	in	
this	.ile	that	looks	like	this:	
#if defined NO_TLS

 int16_t port = 80;

#else

 int16_t port = 443;

#endif

You	may	have	to	change	the	port	variable.	For	example,	if	your	ThingWorx	server	is	
on	port	8080,	then	change	the	NO_TLS	port	to	8080.	
Now	save	this	.ile	with	ctrl-x	and	then	hit	“Y”.	

Disabling	HTTPS	(If	Required)	

If	you	intend	to	use	HTTP	instead	of	HTTPS	on	your	ThingWorx	server	you	must	edit	
the	twLinux.h	.ile	located	in	tw-c-sdk/src/porting/twLinux.h.	You	must	add	the	text	
“#de.ine	NO_TLS”	to	this	.ile	and	change	the	TW_TLS_INCLUDE	de.ine	to	
“twNoTls.h”	as	shown	below	in	red:	
/**

 * \brief Define which pluggable TLS library is used.

 *

 * \note The NO_TLS option turns off encryption altogether which may be
useful

 * for debugging but is also not recommended for production
environments

 * as it may introduce serious security risks.

*/

#define NO_TLS

#define TW_TLS_INCLUDE "twNoTls.h"

Note:	
If	you	are	using	HTTPS	on	your	ThingWorx	server	but	you	are	using	a	self	signed	
certi;icate	you	would	not	make	the	changes	above	to	disable	HTTPS	support.	You	
will	have	to	edit	the	;ile	tw-c-sdk/src/tls/twTls.c	to	disable	certi;icate	validation.	
In	this	;ile	modify	the	existing	line	shown	in	red.	This	value	must	be	changed	from	
TRUE	to	FALSE.	

 tls->options = options;

 tls->selfSignedOk = 0;

 tls->validateCert = FALSE;

 tls->isEnabled = TRUE;

 /* Create our socket */

 tls->connection = twSocket_Create(host, port, 0);

You	have	now	disabled	HTTPS	support	and	can	connect	to	an	HTTP	server	if	
required.	

now	cd	to	“tw-c-sdk/examples/SteamSensor/linux”	and	re-run	the	“make	
PLATFORM=gcc-linux-arm	BUILD=release”	command	again	to	rebuild	your	
SteamSensor.	Now	“cd	bin/gcc-linux-arm/release/“	and	run	“./SteamSensor”	again.	
You	should	now	be	connected	to	your	server.	You	can	verify	this	by	going	to	your	
server,	pulling	down	the	“Monitoring:	menu	and	selecting	“Remote	Things”.	You	
should	now	see	a	“SteamSensor1”	in	the	“Unbound“	tab.	It	would	only	move	to	the	
“Bound”	tab	if	a	Thing	with	the	same	name	using	the	“RemoteThing”	template	was	
created.		

CreaDng	your	own,	Custom	ApplicaDon	
Now	that	you	have	gotten	the	SteamSensor	application	running,	we	can	use	it	as	a	
template	to	create	our	own	custom	application	that	will	read	the	current	board	
temperature	of	the	Raspberry	PI	and	relay	it	to	the	ThingWorx	server.	
Start	by	copying	the	current	SteamSensor	example	to	a	new	directory:	
cd ~/tw-c-sdk/examples

cp -a SteamSensor PIDataCollector

This	will	duplicate	the	SteamSensor	example	in	a	new	directory	called	
PIDataCollector.	Now	we	will	change	the	name	of	the	executable	program	it	will	
produce	when	build.	
cd PIDataCollector/linux

nano Makefile

Now	change	the	value	of	TW_APP_NAME	variable	to	PIDataCollector	and	save	this	
.ile.	

################## APP SPECIFIC DEFINES #######################

TW_APP_NAME is the desired name of the application executable

TW_APP_NAME = PIDataCollector

WriDng	Your	Own	Program	
Replace	your	main.c	in	the	~/tw-c-sdk/examples/PIDataCollector/src	directory	
with	the	source	code	below.	This	example	will	read	your	current	board	temperature	
and	relay	it	to	ThingWorx.	You	should	have	a	copy	of	the	new	main.c	and	a	
Things_PIDataCollector1.xml	.ile	you	can	import	into	ThingWorx	to	bind	this	thing	
with	on	the	server.	

/**

 * This example program reads the current board temperature of a
Raspberry PI

 * and delivers it to a ThingWorx server.

 */

#include "twOSPort.h"

#include "twLogger.h"

#include "twApi.h"

#include <stdio.h>

#include <string.h>

/* Name of the thing you are binding to. */

char * thingName = "PIDataCollector1";

/* Server Details */

#define TW_HOST "your.thingworxserver.com" // Set this to your
ThingWorx server name

#define TW_APP_KEY "e9274d87-58aa-4d60-b27f-e67962f3e5c4" // Change
this to a appKey from your server

/* A simple structure to store current property values. */

struct {

 double BoardTemperature;

 char * DeviceName;

} properties;

/**

 * Reads the current board temperature of this raspberry PI from the /
sys tree.

 */

double getBoardTemperature(){

 FILE *temperatureFile;

 double T;

 temperatureFile = fopen ("/sys/class/thermal/thermal_zone0/temp",
"r");

 if (temperatureFile == NULL) {

 TW_LOG(TW_FORCE,"device file /sys/class/thermal/thermal_zone0/
temp failed to open.");

 return 0;

 }

 fscanf (temperatureFile, "%lf", &T);

 T /= 1000;

 T = T * 1.8f + 32;

 //printf ("The temperature is %6.3f F.\n", T);

 fclose (temperatureFile);

 return T;

}

/**

 * Sends property values stored on your PI back to the ThingWorx
server. You must

 * add your properties to this list for them to be updated on the
server.

 */

void sendPropertyUpdate() {

/* Create the property list */

propertyList * proplist =
twApi_CreatePropertyList("BoardTemperature",twPrimitive_CreateFromNumbe
r(properties.BoardTemperature), 0);

if (!proplist) {

TW_LOG(TW_ERROR,"sendPropertyUpdate: Error allocating
property list");

return;

}

twApi_AddPropertyToList(proplist,"DeviceName",twPrimitive_CreateFromStr
ing(properties.DeviceName,TRUE), 0);

twApi_PushProperties(TW_THING, thingName, proplist, -1, FALSE);

twApi_DeletePropertyList(proplist);

}

/**

 * Called every DATA_COLLECTION_RATE_MSEC milliseconds, this function
is responsible for polling

 * and updating property values.

 */

#define DATA_COLLECTION_RATE_MSEC 2000

void dataCollectionTask(DATETIME now, void * params) {

 properties.BoardTemperature = getBoardTemperature();

sendPropertyUpdate();

}

/**

 * This function is responsible for processing read and write requests
from the server for the BoardTemperature property.

 */

enum msgCodeEnum propertyHandlerBoardTemperature(const char *
entityName, const char * propertyName, twInfoTable ** value, char
isWrite, void * userdata) {

 if (value) {

 if (isWrite && *value) {

 // Value is being set from the server

 // We are not supporting writes to this property

 } else {

 // Value is being read from the server

 *value = twInfoTable_CreateFromNumber(propertyName,
properties.BoardTemperature);

 }

 return TWX_SUCCESS;

 } else {

 TW_LOG(TW_ERROR,"Error updating value");

 }

 return TWX_BAD_REQUEST;

}

/**

 * This function is responsible for processing read and write requests
from the server for the DeviceName property.

 */

enum msgCodeEnum propertyHandlerDeviceName(const char * entityName,
const char * propertyName, twInfoTable ** value, char isWrite, void *
userdata) {

 if (value) {

 if (isWrite && *value) {

 // Value is being set from the server

 // We are not supporting writes to this property

 } else {

 // Value is being read from the server

 *value = twInfoTable_CreateFromString(propertyName,
properties.DeviceName, TRUE);

 }

 return TWX_SUCCESS;

 } else {

 TW_LOG(TW_ERROR,"Error updating value");

 return TWX_BAD_REQUEST;

 }

}

/**

 * This is the main entry point of this application.

 * It is responsible for establishing a ThingName, registering
properties

 * and establishing your connection to the servers.

 */

int main(int argc, char** argv) {

#if defined NO_TLS

int16_t port = 8080;

#else

int16_t port = 443;

#endif

int err = 0;

DATETIME nextDataCollectionTime = 0;

twLogger_SetLevel(TW_TRACE);

twLogger_SetIsVerbose(1);

TW_LOG(TW_FORCE, "Starting up");

/* Initialize Properties */

 properties.BoardTemperature = 0.0;

 properties.DeviceName = "My Raspberry PI";

/* Initialize the API */

err = twApi_Initialize(TW_HOST, port, TW_URI, TW_APP_KEY, NULL,
MESSAGE_CHUNK_SIZE, MESSAGE_CHUNK_SIZE, TRUE);

if (err) {

TW_LOG(TW_ERROR, "Error initializing the API");

exit(err);

}

/* Regsiter our properties */

 twApi_RegisterProperty(TW_THING, thingName, "DeviceName",
TW_STRING, NULL, "ALWAYS", 0, propertyHandlerDeviceName, NULL);

 twApi_RegisterProperty(TW_THING, thingName, "BoardTemperature",
TW_NUMBER, NULL, "ALWAYS", 0, propertyHandlerBoardTemperature, NULL);

/* Bind our thing - Can bind before connecting or do it when the
onAuthenticated callback is made. Either is acceptable */

twApi_BindThing(thingName);

/* Connect to server */

err = twApi_Connect(CONNECT_TIMEOUT, twcfg.connect_retries);

if (!err) {

/* Register our "Data collection Task" with the tasker */

twApi_CreateTask(DATA_COLLECTION_RATE_MSEC,
dataCollectionTask);

} else {

TW_LOG(TW_ERROR,"main: Server connection failed after %d
attempts. Error Code: %d", twcfg.connect_retries, err);

}

while(TRUE) {

DATETIME now = twGetSystemTime(TRUE);

twApi_TaskerFunction(now, NULL);

twMessageHandler_msgHandlerTask(now, NULL);

if (twTimeGreaterThan(now, nextDataCollectionTime)) {

dataCollectionTask(now, NULL);

nextDataCollectionTime = twAddMilliseconds(now,
DATA_COLLECTION_RATE_MSEC);

}

twSleepMsec(5);

}

twApi_UnbindThing(thingName);

twSleepMsec(100);

twApi_Delete();

exit(0);

}

Now	you	can	build	and	run	the	PIDataCollector.	

cd ~/tw-c-sdk/examples/PIDataCollector/linux

make PLATFORM=gcc-linux-arm BUILD=release

./bin/gcc-linux-arm/release/PIDataCollector

You	can	quit	either	by	hitting	the	q	key	or	ctrl-c.	

Conclusion	
This	example	is	meant	as	a	demonstration	of	how	to	use	the	ThingWorx	C	SDK	to	
create	a	simple	C	command	line	application	that	delivers	real	data	from	the	
Raspberry	PI’s	own	internal	on	board	thermometer	to	ThingWorx.	It	also	illustrates	
how	easy	it	is	to	create	your	own	custom	C	program	to	deliver	your	own	data	to	
ThingWorx.	This	example	only	takes	advantage	of	the	most	basic	features	of	the	C	
SDK.	To	learn	more	you	should	take	a	closer	look	at	the	SteamSensor	example	and	
also	the	documentation	that	comes	with	the	C	SDK.	

Written	by	William	Reichardt,	Software	Engineer,	Thingworx	(2015)	

