
liveworx.com # L I V E W O R X

MASHING-UP MULTIPLE DATA
STREAMS - LESSONS LEARNED USING
THINGWORX AND KEPWARE

Yale Evans
Lead Application Analyst

2# L I V E W O R X

How to deploy successful
mashups while avoiding the

pitfalls of improper setup and
configuration of Kepware and

Thingworx. The do’s and
don’ts to make your life easier.

L I V E W O R X 3

DATA FLOW

PLC MASHUP

00101010010101011010100101010101011010101101010101010101011…

4# L I V E W O R X

1. KEPWARE SETUP

L I V E W O R X 5

INSTALLING AND CONFIGURING KEPSERVER EX

L I V E W O R X 6

CHANNELS AND DEVICES

Set up a channel for EVERY DEVICE to enable parallel data streaming (* for fast networks)

DoDon’t

L I V E W O R X 7

CONNECTING KEPSERVER AND THINGWORX

One-to-one connection
Native Interface

One-to-many connection
IoT Gateway

DEV QA

PRD

L I V E W O R X 8

IOT GATEWAY CONFIGURATION

• IoT Gateway functionality allows same data to multiple Thingworx servers

• Beneficial for development and testing

Channel/Devices/Tags IoT Gateway Agents

Single Kepserver EX Server

Thingworx DEV

Thingworx QA

Thingworx PRD

Thingworx Servers

L I V E W O R X 9

TAG NAMING IN KEPSERVER EX

• Thingworx uses “channel_device_tag-group_tag-name” for property names

• Keep all names short

• Group tags logically

Channel

Device

Tag Group

Tag Name

Kepware Channel Config Kepware IoT Gateway Config Thingworx Properties

Legend:

L I V E W O R X 10

OTHER TAG MAINTENANCE ADVICE

• Use export/import to CSV for bulk changes

• FIRST time, set publish to “Every Scan”

then “Only on Data Changes”

11# L I V E W O R X

2. THINGWORX CONFIGURATION

L I V E W O R X 12

IOT GATEWAY/THINGWORX MAPPING
• Do NOT use remote ‘Thing’ mapped to Kepware as a reference

• DO use local ‘Thing’ bound to remote Thing

DoDon’t

Incoming IoT
Gateway

Connection

Remote
Thing_DEV

Mashups

Incoming IoT
Gateway

Connection

Remote
Thing_DEV

Mashups

Local Thing

Use property binding!

L I V E W O R X 13

• Remote thing will be named differently on each server

• Mismatches will occur when deploying

WHY IS FIRST METHOD BAD?

DEV

Remote Thing_DEV

Mashups

Helper
Things

Streams Data
Tables

QA

Remote Thing_QA

Mashups

Helper
Things

Streams Data
Tables

X

X

X

X

X
IoT IoT

Deploy

L I V E W O R X 14

• All links point to same entity name

WHY IS SECOND METHOD BETTER?

DEV

Remote Thing_DEV

Mashups

Helper
Things

Streams Data

Tables

QA

Remote Thing_QA

Mashups

Helper
Things

Streams Data
Tables

✔

X

IoT IoT

✔

✔

✔

✔

Deploy

Only update
needed

Local Thing Local Thing

L I V E W O R X 15

REDUCING DEPLOYMENT COMPLEXITY

• Using a local, commonly-named Thing means only have to update one XML file
during deployment

• Edit XML file before import and replace remote thing name

DEV

Remote Thing_DEV

IoT

Local Thing

QA

Remote Thing_QA

IoT

Local Thing

PRD

Remote Thing_PRD

IoT

Local Thing

XML XML
(replace DEV

with QA)
(replace DEV

with PRD)

✔ ✔

L I V E W O R X 16

• Data for all devices in single Thingworx entity

• Create entity for each device using property binding

• Thing Template defines everything

ENTITY FOR EACH DEVICE

PLC Thing Template

PLC Thing 1 PLC Thing 2 PLC Thing 3 PLC Thing 4

IoT

Remote Thing_DEV

Local Thing
All PLC

Properties

All Properties, Services,
Subscriptions, Alerts defined here

Example Property: Cycle Time

Cycle Time Cycle Time Cycle Time Cycle Time

PLC1_Cycle_Time PLC2_Cycle_Time PLC3_Cycle_Time PLC4_Cycle_Time

L I V E W O R X 17

𝑓 𝑥 = 𝑎0 +

𝑛=1

∞

𝑎𝑛 cos
𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿

• Raw data often needs to be fed through algorithms to get meaningful output

PERFORMING CALCULATIONS

• Start Time

• Part Count

• Cycle Time

• Good Parts

• Bad Parts

• Fault Code

• Actual Rate

• Target Rate

• Run Time

• Down Time

• Faults/Hour

• Total Faults

L I V E W O R X 18

• Initial attempt:
– Create a service to perform calculations
– Service uses input from raw data
– Bind service output to mashup widgets

ANOTHER MISTAKE – RUN CALCULATIONS AT MASHUP TIME

Local Thing Properties

Local Thing Service

Mashup

Inputs Outputs

L I V E W O R X 19

• OK when one user is viewing

• Every additional user runs same service

• Multiplied by auto-refresh rate

• What if more than one service?

1 user x 15-second refresh rate x 1 service = 4 services run/minute

5 users x 15-second refresh rate x 2 services = 40 services run/minute

10 users x 15-second refresh rate x 3 services = 120 services run/minute

O(N)

RUNNING CALCULATIONS AT MASHUP TIME IS BAD

L I V E W O R X 20

• Use a scheduler thing to run the calculations

• Subscription runs service on scheduled event

• Store results in properties

• Use GetProperties service to display values in mashups

BETTER: RUN CALCULATIONS USING A SUBSCRIPTION

Now one service only runs once every scheduled

period and all mashups use the same output data

L I V E W O R X 21

SCHEDULED SUBSCRIPTION SEQUENCE

Local Thing Properties

Local Thing Subscription
Raw
Data

Calculated
Data

Every 15
seconds

var result = me.CalculateRawData();

for (var prop in result) {

me[prop] = result[prop];

}

Input

Output

Local Thing
Scheduler

L I V E W O R X 22

MASHUPS NOW JUST READ CALCULATED PROPERTIES

L I V E W O R X 23

• Service called by subscription returns JSON

• One-to-one mapping between JSON and Thing properties

• Super simple and reduces maintenance

• Subscription code never needs changing

SUBSCRIPTION STRATEGY

var result = me.CalculateRawData();

for (var prop in result) {

me[prop] = result[prop];

}

Subscription

Service

var result = {

ProductionRate : 181,

TargetPartRate : 196,

TheoreticalPartRate : 22,

FixtureHitRate : 83,

CurrentModelPartCount : 1020,

TheoreticalPartCount : 1946,

ShiftTotalPartCount : 1020

}

JSON Output

One-to-one
mapping

L I V E W O R X 24

• Use thing shape for properties returned in JSON

• Especially if multiple ‘Things’ have same properties

• For new properties, add to service output and thing shape

• No need to maintain data shapes, info tables, or subscription code

USE THING SHAPES

var result = {

ProductionRate : 181,

TargetPartRate : 196,

TheoreticalPartRate : 22,

FixtureHitRate : 83,

CurrentModelPartCount : 1020,

TheoreticalPartCount : 1946,

ShiftTotalPartCount : 1020

RunningAverage : 123.5

}

JSON Output

Thing Shape Properties

1. Add here

2. Add here

3. Done!

L I V E W O R X 25

• Only need to update one Thing Template & one Thing Shape

• All inherited Things updated automatically

THING SHAPE IMPLEMENTATION

PLC Thing Template PLC Thing Shape

PLC Thing 1 PLC Thing 2 PLC Thing 3 PLC Thing 4 PLC Thing 5 PLC Thing 6

Implements

Service

Inherits

26# L I V E W O R X

3. MASHUPS

L I V E W O R X 27

Problem:

One mashup, several
machines

Solution:

Use dynamic thing templates
as data sources

DESIGNING COMMON MASHUPS

Mashup: CurrentJobRun

Input Specific PLC name as
input parameter

L I V E W O R X 28

Problem:

• Mashup shared by all roles

• Master exists for each role

• Can only configure one
master

DESIGNING COMMON MASHUPS

Mashup: CurrentJobRun

L I V E W O R X 29

• Define outer mashups for different roles

• Each outer mashup has same inner mashup

• Outer mashups points to appropriate master

USE NESTED MASHUPS FOR DIFFERENT ROLES

Mashup:
CurrentJobRunOperator

Mashup:
CurrentJobRunMaintenance

Mashup:
CurrentJobRunManager

Master:
Operator Master

Master:
Maintenance Master

Master:
Manager Master

L I V E W O R X 30

• Each role has a master

• Each role has a menu

MASTER MENUS POINT TO OUTER MASHUPS

Operator Master

Operator Menu

Maintenance Master

Maintenance Menu

Manager Master

Manager Menu

L I V E W O R X 31

MENUS POINT TO OUTER MASHUPS

Operator Menu

Maintenance Menu

Manager Menu

L I V E W O R X 32

• All roles see the same mashup

• Menus stay role-specific

PUTTING IT ALL TOGETHER

Operator will see:

Current Job Run
Job History

Maintenance will see:

Current Job Run
Job History
Machine Settings

Repair History

Manager will see:

Current Job Run
Job History
Machine Settings

Repair History
OEE Reports
Assigned Operator

Outer Mashup Inner Mashup

33# L I V E W O R X

4. APACHE TOMCAT

L I V E W O R X 34

• Add RewriteValve to Apache Tomcat

• Add URL aliases to simplify access

• Reduce appkey management

Which URL is easier to manage and distribute?

http://thingworx.moen.com/Thingworx/Mashups/Moen+Brazing+Machine+Single+M
achine+Full?appKey=3f91aab7-a88b-4e50-b9bc-33e353b61d8e&x-thingworx-

session=true&MoenBrazingMachinePLCName=MoenNewbernBrazingMachinePLC_M
1454

Or

http://thingworx.moen.com/m1454

USE TOMCAT REWRITE VALVE

http://thingworx.moen.com/Thingworx/Mashups/Moen+Brazing+Machine+Single+Machine+Full?appKey=3f91aab7-a88b-4e50-b9bc-33e353b61d8e&x-thingworx-session=true&MoenBrazingMachinePLCName=MoenNewbernBrazingMachinePLC_M1454
http://thingworx.moen.com/m1454

L I V E W O R X 35

• Helpful in external launch pages

• Can be used in internal mashups

TOMCAT REWRITE VALVE

<Apache install directory>/conf/Catalina/localhost/rewrite.conf:

RewriteRule /operator /Thingworx/Mashups/MyApplicationOperator

RewriteRule /maintenance /Thingworx/Mashups/MyApplicationMaintenance

RewriteRule /manager /Thingworx/Mashups/MyApplicationManager

Apache Rewrite File

Internal Launch Mashup
(Link Widgets)

L I V E W O R X 36

SUMMARY

37# L I V E W O R X

WE WANT YOUR FEEDBACK
Please remember to complete

your evaluation by selecting

the session in your mobile app.

Survey

