

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

Creating Widgets for ThingWorx

NOTE: this document presumes you’re familiar with HTML, JavaScript and jquery.

Creating a new widget for ThingWorx is incredibly straightforward and powerful. Any capability
available from JavaScript and HTML can be encapsulated and created as a widget within ThingWorx.
Every widget in ThingWorx’s Mashup environment was built with the same SDK we deliver to you.

For purposes of demonstration we’ll create a simple “Hello World” widget that accepts a bindable
“DisplayText” and adds that text to “Hello World”.

Creating a widget requires to you have 4 files:

● helloWorldWidget.ide.js
● helloWorldWidget.ide.css
● helloWorldWidget.runtime.js
● helloWorldWidget.runtime.css

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

Adding a new widget requires you to have it available within the Mashup Builder. This is done by
packaging the widget and importing is as an extension package, please refer to the ThingWorx
Extensibility document for information on facilitating.

Builder Code
The ide.js has a few simple methods you must implement. The widgets are declarative. There are 3
functions where you declare your widget’s properties, services and events. For example, to develop a
widget with a bindable string property “DisplayText” that is used to update your HTML… this is all the
javascript that’s required to declare those properties:

TW.IDE.Widgets.helloWorldWidget = function () {

 this.widgetProperties = function () {

 return {

 'name': 'Hello World Widget',

 'description': 'Demonstration widget',

 'category': ['Common'],

 'properties': {

 'DisplayText': {

 'baseType': 'STRING',

 'defaultValue': 'whatever default you want',

 'isBindingTarget': true

 }

 // add any additional properties here

 }

 };

 };

 ...

};

Runtime Code
To handle this widget at runtime, you need to have some methods available to:

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

● render the HTML you’d like at runtime
● set up any bindings you need to after rendering the HTML
● handle property updates

The runtime code must be in the runtime.js file. Here is the runtime code necessary to handle what
we’ve described above:

TW.Runtime.Widgets.helloWorldWidget = function () {

 var valueElem;

 this.renderHtml = function () {

 // return any HTML you want rendered for your widget

 // If you want it to change depending on properties that the user

 // has set, you can use this.getProperty(propertyName). In

 // this example, we’ll just return static HTML

 return

'<div class="widget-content widget-helloWorldWidget">' +

 '' +

‘Hello World’ +

'' +

 '' +

'' +

"</div>';

 };

 this.afterRender = function () {

 // NOTE: this.jqElement is the jquery reference to your html dom element

 // that was returned in renderHtml()

 // get a reference to the value element

 valueElem = this.jqElement.find('.whatever’);

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

 // udpate that DOM element based on the property value that the user set

 // in the mashup builder

 valueElem.text(this.getProperty('DisplayText'));

 };

 // this is called on your widget anytime bound data changes

 this.updateProperty = function (updatePropertyInfo) {

 // TargetProperty tells you which of your bound properties changed

 if (updatePropertyInfo.TargetProperty === 'DisplayText') {

 valueElem.text(updatePropertyInfo.SinglePropertyValue);

 this.setProperty('DisplayText', updatePropertyInfo.SinglePropertyValue);

 }

 };

};

Additional Features
Of course, this is a very simple example … other functionality you can incorporate into your widgets:

● Services that can be bound to events (e.g. Click of a button, Selected Rows Changed or Service
Completed)

● Events that can be bound to various services (invoke a service, navigate to a mashup, etc.)
● Properties can be bound out as well (this example only showed properties being bound in)

Within your widget code at runtime, you can access the full power of javascript and HTML … virtually
anything that can be done using HTML and JavaScript is available within your widget.

Summary
That’s it. Now your widget will be available in the Mashup Builder and you can use it in your mashups.
Using the ThingWorx Extensibility Toolkit you can make your widget available to any project you work
on.

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

There are additional documents with all the details for

● ThingWorx Widget SDK - Composer
● ThingWorx Widget SDK - Runtime
● ThingWorx Extensibility

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

Widget API - Composer/Builder

Widget Lifecycle in the Composer
● discovered (because of js being loaded into Index.html) and added to the widget toolbar/palette

○ widgetProperties is called to get information about each widget (e.g. display name and

description)

○ widgetEvents is called to get information about the events each widget exposes

○ widgetServices is called to get information about the serviceseach widget exposes

● created (e.g. dragged onto a mashup panel)

○ afterLoad is called after your object is loaded and properties have been restored from

the file, but before your object has been rendered

● appended to the workspace DOM element

○ renderHtml is called to get a HTML fragment that will get inserted into the mashup

DOM element

○ afterRender is called after the HTML fragment representing the widget has been

inserted into the mashup DOM element and a usable element ID has been assigned to

the DOM element holding the widget content, the DOM element is now ready to be

manipulated

● updated (e.g. resized, or updated via the widget property window)

○ beforeSetProperty is called before any property is updated

○ afterSetProperty is called after any property is updated

● destroyed (i.e. when it’s deleted from the mashup)

○ beforeDestroy is called right before the widget’s DOM element gets removed and the

widget is detached from its parent widget and dellocated; this is the place to perform

any clean-up of resources (e.g. plugins, event handlers) acquired throughout the lifetime

of the widget

API Provided for your Widget - Composer
● Calls/properties that runtime provides for a widget

○ this.jqElementId

■this is the DOM element ID of your object after renderHtml

○ this.jqElement

■this is the jquery element

○ this.getProperty(name)

○ this.setProperty(name,value)

● Note: in the Composer every call to this will call afterSetProperty() if it’s defined

in your widget

● this.updatedProperties()

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

○ If you change the properties of your object at any point, please call

this.updatedProperties() to let the Builder know that it needs to update the widget

properties window, the connections window, etc.

● this.getInfotableMetadataForProperty(propertyName)

○ if you need the infotable metadata for a property you have bound, you can get it by

calling this API … it returns undefined if you’re not bound.

● this.resetPropertyToDefaultValue(propertyName)

○ this resets the named property back to whatever it’s default value is.

● this.removeBindingsFromPropertyAsTarget(propertyName)
○ this removes any target data bindings from this propertyName … use this only when the

user has initiated an action that invalidates that property.
● this.removeBindingsFromPropertyAsSource(propertyName)

○ this removes any source data bindings from this propertyName … use this only when the
user has initiated an action that invalidates that property.

● this.isPropertyBoundAsTarget(propertyName)

○ this returns whether the property has been bound as a target. Most useful when trying

to validate if a property has been either set or bound, for example the blog widgets

validate() function:

 this.validate = function () {

 var result = [];

 var blogNameConfigured = this.getProperty('Blog');

 if (blogNameConfigured === '' || blogNameConfigured ===

undefined) {

 if (!this.isPropertyBoundAsTarget('Blog')) {

 result.push({ severity: 'warning',

message: 'Blog is not configured or bound for

{target-id}' });

 }

 }

 return result;

 }

● this.isPropertyBoundAsSource(propertyName)
○ this returns whether the property has been bound as a source. Most useful when trying

to validate if a property has been bound to a target, for example, the checkbox widgets
validate() function:

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

 this.validate = function () {

 var result = [];

 if (!this.isPropertyBoundAsSource('State')

&& !this.isPropertyBoundAsTarget('State')) {

 result.push({ severity: 'warning',

message: 'State for {target-id} is not bound to any target'

 });

 }

 return result;

 }

Callbacks from Composer to your Widget
● widgetProperties() [required]

○ returns a JSON structure defining the properties of this widget

○ required properties

■name - the user-friendly widget name, as shown in the widget toolbar

○ optional properties

■description - a description of the widget; used for tooltip

■iconImage - file name of the widget icon image

■category - an array of strings for specifying one or more categories that the widget

belongs to (i.e. Common, Charts, Data, Containers, Components); enables the

user to filter widgets by type/category

■isResizable - true or false (default to true)

■defaultBindingTargetProperty - name of the property to use as data/event binding

target

■borderWidth - if your widget provides a border, set this to the width of the border.

This helps ensure pixel-perfect WYSIWG between builder and runtime.

● If you set a border of 1px on the “widget-content” element at design

time, you are effectively making that widget 2px taller and 2px wider

(1px to each side). To account for this descrepancy, setting the

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

borderWidth property will make the design-time widget the exact same

number of pixels smaller. Effectively, this places the border “inside” the

widget that you have created and making the width & height in the

widget properties accurate.

■isContainer - true or false (default to false); controls whether an instance of this

widget can be a container for other widget instances

■customEditor - name of the custom editor dialog to use for entering/editing the

widget’s configuration. If you put xxx, the system presumes you have created

TW.IDE.Dialogs.xxx that conforms to the Mashup Widget Custom Dialog API

(described in a separate document). We could support the ability to specify an

array here as well where each entry would create an additional tab in the

widget configuration dialog. For 1.1 we’ll limit this to a string and only one

custom configuration.

■customEditorMenuText: the text that will appear on the flyout menu for your

widget as well as the hover text over the configure widget properties button.

For example: 'Configure Grid Columns'.

■allowPositioning - optional, true or false (default to true)

■supportsLabel - optional, true or false (default to false); if true, the widget will

expose a ‘Label’ property whose value will be used to create a text label that sits

next to the widget in the Composer and runtime

■properties - a collection of property (attribute) objects; each property object can

have...

● property name :

○ description - a description of the widget; used for tooltip

○ baseType- the system base type name; in addition, if the

baseType value is ‘FIELDNAME’, the widget property window

will display a dropdown list that allows the user to pick from a

list of fields available in the INFOTABLE bound to the

sourcePropertyName value, based on the baseTypeRestriction

specified; for an example, see the TagCloud widget

implementation. Other special baseTypes:

■STATEDEFINITION just picks a StateDefinition

■STYLEDEFINITION just picks a StyleDefinition

■RENDERERWITHSTATE will show a dialog and allow you to

select a renderer and formatting that goes along with it.

Note: you can set a default Style by putting the string

with the default style name in the ‘defaultValue’. Also,

note that anytime your binding changes, you should

reset this to the default value as in the code below:

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

 this.afterAddBindingSource = function (bindingInfo) {

 if (bindingInfo['targetProperty'] === 'Data') {

this.resetPropertyToDefaultValue('ValueFormat');

 }

 };

■STATEFORMATTING will show a dialog and allow you to pick
either fixed style or a state-based style. Note: you can
set a default Style by putting the string with the default
style name in the ‘defaultValue’. Also, note that
anytime your binding changes, you should reset this to
the default value as in the code above for
RENDERERWITHSTATE.

■VOCABULARYNAME will just pick a DataTags vocabulary at

the moment

○ mustImplement - if the baseType is THINGNAME, and you

specify “mustImplement” the Composer will restrict to popups

implementing the specified EntityType and EntityName [by

calling QueryImplementingThings against said EntityType and

EntityName]

 'baseType': 'THINGNAME',

 'mustImplement' : {

 'EntityType' : 'ThingShapes',

 'EntityName' : 'Blog'

 },

○ baseTypeInfotableProperty - if baseType is

RENDERERWITHFORMAT, baseTypeInfotableProperty specifies

which property’s infotable is used for configuration

○ sourcePropertyName - when the property’s baseType is

‘FIELDNAME’, this attribute is used to determine which

INFOTABLE’s fields are to be used to populate the FIELDNAME

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

dropdown list; for an example, see the TagCloud widget

implementation

○ baseTypeRestriction - when specified, this value is used to
restrict the fields available in the FIELDNAME dropdown list; for
an example, see the TagCloud widget implementation

○ tagType - if the baseType is ‘TAGS’ this can be ‘DataTags’ or

‘ModelTags’ … defaults to DataTags

○ defaultValue - default undefined; used only for ‘property’ type

○ isBindingSource - true or false; allows the property to be a data

binding source, default to false

○ isBindingTarget - true or false; allows the property to be a data

binding target, default to false

○ isEditable - true or false; controls whether the property can be

edited in the Composer, default to true

○ isVisible - true or false; controls whether the property is visible

in the properties window, default to true

○ selectOptions - an array of value / (display) text structures

■Example: [{ value: ‘optionValue1’, text: ‘optionText1’}, {

value: ‘optionValue2’, text: ‘optionText2’}]

○ warnIfNotBoundAsSource - true or false; if true, then the

property will be checked by the Composer for whether it’s

bound and generate a to-do item when it’s not

○ warnIfNotBoundAsTarget - true or false; if true, then the
property will be checked by the Composer for whether it’s
bound and generate a to-do item when it’s not

● afterLoad() [optional]

○ called after your object is loaded and properties have been restored from the file, but

before your object has been rendered

● renderHtml() [required]

○ returns HTML fragment that the Composer will place in the screen; the widget’s content

container (e.g. div) must have a ‘widget-content’ class specified, after this container

element is appended to the DOM, it becomes accessible via jqElement and its DOM

element id will be available in jqElementId

● widgetEvents() [optional]
○ a collection of events; each event can have...

■property name:
● warnIfNotBound - true or false; if true, then the property will be

checked by the Composer for whether it’s bound and generate a to-do
item when it’s not

● widgetServices() [optional] [2.1+]
○ a collection of services; each service can have...

■property name:

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

● warnIfNotBound - true or false; if true, then the property will be
checked by the Composer for whether it’s bound and generate a to-do
item when it’s not

● afterRender() [optional]

○ called after we insert your html fragment into the dom

● beforeDestroy() [optional]

○ called right before the widget’s DOM element gets removed and the widget is detached

from its parent widget and dellocated; this is the place to perform any clean-up of

resources (e.g. plugins, event handlers) acquired throughout the lifetime of the widget

● beforeSetProperty(name,value) [optional] [Composer only - not at runtime]
○ called before any property is updated within the Composer, this is a good place to

perform any validation on the new property value before it is committed;
○ if a message string is returned, then the message will be displayed to the user, and the

new property value will not be committed
● afterSetProperty(name,value) [optional] [Composer only - not at runtime]

○ called after any property is updated within the Composer

○ return true to have the widget re-rendered in the Composer

● afterAddBindingSource(bindingInfo) [optional]

○ whenever data is bound to your widget, you will called back with this (if you implement

it … it’s optional)

○ The only field in bindingInfo is targetProperty which is the propertyName that was just

bound

● validate() [optional]

○ called when the Composer refreshes its to-do list;

○ the call must return an array of result object with severity (optional and not

implemented) and message (required) properties;

○ the message text may contain one or more pre-defined tokens, such as {target-id},

which will get replaced with a hyperlink that allows the user to navigate/select the

specific widget that generated the message

○ for example:

this.validate = function () {

 var result = [];

 var srcUrl = this.getProperty('SourceURL');

 if (srcUrl === '' || srcUrl === undefined) {

 result.push({ severity: 'warning', message: 'SourceURL is not defined

 for {target-id}' });

 }

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

 return result;

}

Tips
● Use this.jqElement to limit your element selections, this will reduce the chance of introducing

unwanted behaviors in the the application when there might be duplicate IDs and/or classes in
the DOM.

○ Don’t do...
■$(‘.add-btn’).click(function(e) { ...do something... });

○ Do...
■this.jqElement.find(‘.add-btn’).click(function(e) { ...do something... });

● widget.properties - only store actual properties that you want saved and loaded with your

object. For example, do not use this area to store a reference to a 3rd-party component … the

Builder literally stores the entire widget.properties as a JSON structure in the mashup and both

the Builder and Runtime load this JSON structure.

● Logging - we recommend that you use the following methods to log in the Widget Composer
and Runtime environment:

○ TW.log.trace(message[, message2, ...][, exception])
○ TW.log.debug(message[, message2, ...][, exception])
○ TW.log.info(message[, message2, ...][, exception])
○ TW.log.warn(message[, message2, ...][, exception])
○ TW.log.error(message[, message2, ...][, exception])
○ TW.log.fatal(message[, message2, ...][, exception])

You can view the log messages in the Mashup Composer by opening the log window via the
Help>Log menu item; in the mashup runtime, you can now click on the "Show Log" button on
the top left corner of the page to show log window. If the browser you use supports
console.log(), then the messages will also appear in the debugger console.

● Clicks - if your widget is not able to be selected, your UI may be “swallowing” clicks. To
counteract this, include this line at the end of your code in afterRender():

http://tw.log.info/
http://tw.log.info/
http://tw.log.info/
http://tw.log.info/
http://tw.log.info/

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

thisWidget.jqElement.find('*').unbind('click');

thisWidget.jqElement.find('*').bind('click', function (e) {

 thisWidget.jqElement.click();

 e.stopPropagation(); // this stops the event from bubbling

 // up the DOM tree

});

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

Widget API - Runtime

Widget Lifecycle in the Runtime
○ Whenever a mashup that contains one of your widgets, you will first be called with

runtimeProperties, which is optional and only contains a few definitions.

○ The property values that were saved in the mashup definition will be loaded into your

object without your code being called in any way

○ After your widget is loaded but before it’s put on to the screen, the runtime will call

renderHtml where you return the HTML for your object. The runtime will render that

HTML into the appropriate place in the DOM

○ Immediately after that HTML is added to the DOM, you will be called with afterRender.

This is the time to do the various jquery bindings (if you need any). It is only at this point

that you can reference the actual DOM elements and you should only do this using code

such as

 var widgetElement = this.domElement; // note that this is a jquery object

This is important because the runtime actually changes your DOM element ID and you

should never rely on any id other than the id returned from this.domElementId)

○ If you have defined an event that can be bound, whenever that event happens you

should call

 var widgetElement = this.domElement;

 widgetElement.triggerHandler('Clicked'); // change ‘Clicked’ to be whatever your

event name

is that you defined in your runtimeProperties that people bind

to

○ If you have any properties bound as data targets, you will be called with

updateProperty. You are expected to update the DOM directly if the changed property

affects the DOM - which is likely, otherwise why would the data be bound :)

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

○ If you have properties that are defined as data sources and they’re bound you can be

called with getProperty_{propertyName}() … if you don’t define this function, the

runtime will simply get the value from the property bag.

API Provided for your Widget - Runtime
● Calls/properties that runtime provides for a widget

○ this.domElementId

■this is the DOM element ID of your object after renderHtml

○ this.jqElement

■this is the jquery element

○ this.getProperty(name)

○ this.setProperty(name,value)

○ this.updateSelection(propertyName,selectedRowIndices)

■call this anytime your widget changes selected rows on data bound to a certain

propertyName … e.g. in a callback you have for an event like

onSelectStateChanged you’d call this API and the system will update any other

widgets relying on selected rows

Callbacks from the Runtime to your Widget
● runtimeProperties() [optional]

○ returns a JSON structure defining the properties of this widget

○ optional properties

■isContainer - true or false (default to false); controls whether an instance of this

widget can be a container for other widget instances

■needsDataLoadingAndError - true or false (defaults to false) - set to true if you want

your widget to display the standard 25% opacity when no data has been

received and turn red when there is an error retrieving data

■borderWidth - if your widget provides a border, set this to the width of the border.
This helps ensure pixel-perfect WYSIWG between builder and runtime

● renderHtml() [required]

○ returns HTML fragment that the runtime will place in the screen; the widget’s content
container (e.g. div) must have a ‘widget-content’ class specified, after this container
element is appended to the DOM, it becomes accessible via jqElement and its DOM
element id will be available in jqElementIdlo

○

● afterRender() [optional]

○ called after we insert your html fragment into the dom

○ use this.domElementId to find the DOM element ID

○ use this.jqElement to use the jQuery reference to this dom element

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

● beforeDestroy() [optional but highly recommended]

○ this is called anytime your widget is unloaded, this is the spot to...

■unbind any bindings

■clear any data set with .data()

■destroy any 3rd party libraries or plugins, call their destructors, etc.

■free any memory you allocated or are holding on to in closures, by setting the

variables to null

■you do not need to destroy the DOM elements inside your widget, they will be

destroyed for you by the runtime

● handleSelectionUpdate(propertyName, selectedRows, selectedRowIndices)
○ called whenever selectedRows has been modified by the data source you’re bound to

on that (PropertyName. selectedRows is an array of the actual data and
selectedRowIndices is an array of the indices of the selected rows

● serviceInvoked(serviceName) [2.1+]
○ serviceInvoked() is called whenever a service you defined is triggered.

● updateProperty(updatePropertyInfo)

■ updatePropertyInfo is an object with the following JSON structure

 {

 DataShape: metadata for the rows returned,

 ActualDataRows: actual Data Rows

 SourceProperty: SourceProperty

 TargetProperty: TargetProperty

 RawSinglePropertyValue: value of SourceProperty in the first row of ActualDataRows,

 SinglePropertyValue: value of SourceProperty in the first row of ActualDataRows

converted to the defined baseType of the target

property [not implemented yet],

 SelectedRowIndices: an array of selected row indices.

SourceDetail: either “AllData” or “SelectedRows” - for some widgets, it’s
important tthiso know which of these situations you’re in

 }

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

For each data binding, your widget’s updateProperty() will be called each time the

source data is changed. You need to check updatePropertyInfo.TargetProperty to

determine what aspect of your widget should be updated. Here is an example from

thingworx.widget.image.js ...

 this.updateProperty = function (updatePropertyInfo) {

 // get the img inside our widget in the DOM

 var widgetElement = $('#' + this.domElementId + ' img');

 // if we're bound to a field in selected rows and there are no selected rows,

 // we'd overwrite the default value if we didn't check here

 if (updatePropertyInfo.RawSinglePropertyValue !== undefined) {

 // see which TargetProperty is updated

 if (updatePropertyInfo.TargetProperty === 'sourceurl') {

 // SourceUrl updated - update the <img src=

 this.setProperty('sourceurl', updatePropertyInfo.SinglePropertyValue);

 widgetElement.attr("src", updatePropertyInfo.SinglePropertyValue);

 } else if (updatePropertyInfo.TargetProperty === 'alternatetext') {

 // AlternateText updated - update the <img alt=

 this.setProperty('alternatetext',

updatePropertyInfo.SinglePropertyValue);

 widgetElement.attr("alt", updatePropertyInfo.SinglePropertyValue);

 }

}

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

 };

Note that we set a local copy of the property in our widget object as well so that if that

property is bound as a data source for a parameter to a service call (or any other

binding) - the runtime system can simply get the property from the property bag.

Alternatively, we could supply a custom getProperty_{propertyName} method and store

the value some other way.

● getProperty_{propertyName}()

○ anytime that the runtime needs a property value, it checks to see if your widget

implements a function to override and get the value of that property. This is used when

the runtime is pulling data from your widget to populate parameters for a service call.

Tips

● Use this.jqElement to limit your element selections, this will reduce the chance of introducing

unwanted behaviors in the application when there might be duplicate IDs and/or classes in the

DOM.

○ Don’t do...

■$(‘.add-btn’).click(function(e) { ...do something... });

○ Do...

■this.jqElement.find(‘.add-btn’).click(function(e) { ...do

something... });

● Logging - we recommend that you use the following methods to log in the Widget Composer

and Runtime environment:

○ TW.log.trace(message[, message2, ...][, exception])

○ TW.log.debug(message[, message2, ...][, exception])

○ TW.log.info(message[, message2, ...][, exception])

○ TW.log.warn(message[, message2, ...][, exception])

○ TW.log.error(message[, message2, ...][, exception])

○ TW.log.fatal(message[, message2, ...][, exception])

You can view the log messages in the Mashup Composer by opening the log window via the

Help>Log menu item; in the mashup runtime, you can now click on the "Show Log" button on

http://tw.log.info/
http://tw.log.info/
http://tw.log.info/
http://tw.log.info/
http://tw.log.info/

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

the top left corner of the page to show log window. If the browser you use supports

console.log(), then the messages will also appear in the debugger console.

● Formatting - if you have a property with baseType of STYLEDEFINITION, you can get the style

information by calling

var formatResult =

TW.getStyleFromStyleDefinition(widgetProperties['PropertyName']);

If you have a property of baseType of STATEFORMATTING

var formatResult = TW.getStyleFromStateFormatting({

DataRow: row,

StateFormatting: thisWidget.properties['PropertyName']

});

In both cases formatResult is an object with the following defaults:

 {

 image: '',

 backgroundColor: '',

 foregroundColor: '',

 fontEmphasisBold: false,

 fontEmphasisItalic: false,

 fontEmphasisUnderline: false,

 displayString: '',

 lineThickness: 1,

 lineStyle: 'solid',

 lineColor: '',

 secondaryBackgroundColor: ''

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

 };

If you need to get information about the states defined, you can call

TW.getStateInformation(stateFormattingProperty) ...

It returns an array of structures with the following fields:

isDefault [true or false]

stateDefinitionType [‘fixed’, ‘numeric’, or ‘string’] Note: this will be the same for every

item in the array

styleDefinition [name of the style … can call TW.getStyleFromStyleDefinition() as

described above

comparator [only used if not default … either ‘==’, ‘<’ and ‘<=’]

value [value used for the state]

Here is a sample call that I added within tagCloud (but didn't check in)

 var test = TW.getStateInformation(widget.properties['TagStateStyle']);

 TW.log.info('# states: ' + test.length.toString());

 for (var i = 0; i < test.length; i++) {

 TW.log.info(' '

+ i.toString()

+ ': isDefault:' + test[i].isDefault

+ ', stateDefinitionType:' + test[i].stateDefinitionType

+ ', comparator:' + test[i].comparator

+ ', value:' + test[i].value);

 }

Creating UI Widgets ThingWorx™ © 2013 All Rights reserved

