
Extension Development
Guide
Version 4.2

December 2016

Copyright © 2016 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
“PTC”) are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view
offenders accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly
and criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and transmit
data on users of illegal copies of our software. This data collection is not performed on users of legally
licensed software from PTC and its authorized distributors. If you are using an illegal copy of our software
and do not consent to the collection and transmission of such data (including to the United States), cease
using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND

This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, use, duplication, or disclosure by the Government is subject to the restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-
7013 (OCT’88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2) (JUN’87),
as applicable. 01012015

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Document Revision History
Revision Date Version Description of

Change
December 2, 2015 3.0 Updated version based on

the Eclipse Plugin for
ThingWorx Extension
Development

February 15, 2016 3.1 Added the API
Compatibility section

April 18, 2016 4.0 New content including
the Widget Development
Guide (previously a
separate document named
Creating Widgets for
ThingWorx)

August 4, 2016 4.1 Updates based on
ThingWorx Core 7.2

December 15, 2016 4.2 Added Entity
Characteristic Support
section

4

Contents

About this Guide ...7
Prerequisites ..8

Introduction to Extensions..9
What is an Extension?...10
Why Build an Extension?...10

Creating Extensions .. 11
Extension Zip File Structure...12
Metadata.xml File ...12
Entities Created in ThingWorx Composer ...23
Java-Based Entities ..24
Extension Migrators ..39
Third-Party JAR Files ..40
Adding Custom Widgets..41
Extension Import and Management..42
Entity Characteristic Support ...43

Using the Eclipse Plugin ..45
Installing the Eclipse Plugin for ThingWorx Extension Development........................46
Creating an Extension Project..46
Importing Existing Extensions..47
Creating Entities ...48
Adding Services, Properties, Configuration Tables, Subscriptions, and
Events ..48

Creating Widgets ..48
Adding Third-Party JAR Files...49
Adding an Extension Migrator ..49
Importing Composer-Created Entities...49
Building Extensions ..50
Deleting Entities and Widgets ..50

Best Practices...53
Use the Eclipse Plugin ..54
The Golden Rule: Use as Few External jars as Possible ..54
Develop on a Clean Platform Instance..54
Back Up Storage Before Delete ...54
Logging..55

Troubleshooting and Debugging...57
ThingTemplate Does Not Exist After Successful Import..58
Jar Conflict on Import ..58
Updated Extension Retains Old Version’s Functionality ...58

5

Failed to Create Data Shape..58
Thing Does Not Run After Create or Save...58
Debugging an Issue When Importing..58
Connecting a Debug Port to Tomcat ...59

Appendix A: Examples...61
Platform Integration Example using Twitter ...62
Example using Tomcat Monitor GUI and Eclipse ...62
HelloWorldThing...64
GoodByeThing ...66
Common Code Snippets ...68

Appendix B: Widget Implementation Guide..73
Referencing Third-Party JavaScript Libraries and Files..74

6 Extension Development Guide

1
About this Guide

Prerequisites...8

This guide explains why and how you would develop an extension for
ThingWorx. It describes best practices for creating ThingWorx extensions.

7

Prerequisites
To develop ThingWorx extensions, you must have the following:

Training
• An understanding of the ThingWorx Composer and its modeling capabilities
• An understanding of the ThingWorx Mashup Builder

ThingWorx Platform and Development Tools
• ThingWorx 6.6.0 or newer Platform instance
• Access to the Apache Tomcat instance that is running the ThingWorx instance
• Java SE Development Kit (JDK) 8
• The ThingWorx Extension SDK for your version of ThingWorx
To use the Eclipse Plugin for ThingWorx Extension Development, you must have
the following:

Eclipse
• Eclipse IDE for Java EE Developers, Mars 4.5 release or newer
• The Eclipse Plugin for ThingWorx Extension Development

8 Extension Development Guide

2
Introduction to Extensions

What is an Extension? ...10
Why Build an Extension? ...10

9

What is an Extension?
An extension is a collection of entities, resources, and widgets that is used to
extend the functionality of the ThingWorx Platform. This collection is packaged
into a .zip file, which can be imported to any ThingWorx Platform and is used to
expose new functionality (such as email servers).
Entities are created using Composer. You can create widgets, resources, and Java
code using external tools for writing HTML, CSS, and JavaScript, such as Eclipse.
You can use extensions as building blocks for delivering new services or
applications for the ThingWorx Platform. You can deliver these building block
extensions individually or you can zip them together for easy deployment.
Extensions can be published on the ThingWorx Marketplace, which is accessible
by the customer community of PTC/ThingWorx.

Why Build an Extension?
There are several reasons why you might want to build an extension, including the
following:
• Your solution includes multiple entities that depend on one another’s existence

in order to function.
• Your solution depends on a Java library that is not accessible within

ThingWorx Platform.
• You would like to hide your source code from those who use the extension.
• You would like to use a custom widget that does not exist on ThingWorx

Platform.
• You want a global service that is not associated with an entity (resource).
• Your organization needs to use a custom directory service or user

authorization scheme.

10 Extension Development Guide

http://marketplace.thingworx.com

3
Creating Extensions

Extension Zip File Structure ...12
Metadata.xml File ..12
Entities Created in ThingWorx Composer ..23
Java-Based Entities...24
Extension Migrators...39
Third-Party JAR Files...40
Adding Custom Widgets ..41
Extension Import and Management ..42
Entity Characteristic Support ..43

You can create ThingWorx extensions using common editors and development
tools, as long as the artifacts are created following the expected convention and
are packaged in the expected structure. This section explains how these artifacts
must be created so they work correctly after being imported into ThingWorx.

Tip
Because it can be challenging to correctly build the various pieces of an
extension, the Eclipse Plugin for ThingWorx Extension Development (Eclipse
Plugin) has been created to help developers build extensions quickly and
concentrate on developing their features rather than worrying about getting the
extension structured correctly. The productivity improvements provided by the
Eclipse Plugin make it a compelling tool to use when building ThingWorx
extensions. For more information, see Use the Eclipse Plugin.

11

Extension Zip File Structure
The high-level process for creating an extension includes a combination of the
following steps:

1. Specify the extension information and its artifacts in a metadata.xml file.
2. Model various ThingWorx entities in Composer, and export these entities into

their corresponding XML files for inclusion in the extension.
3. Create a JAR file containing Java-based entities and other classes, and include

these and any required third-party JAR files in the extension.
4. Create custom widgets to be included in mashups.
These artifacts must be packaged into the extension zip file in the following folder
structure:
Zip File Element Description
/metadata.xml The metadata.xml file contains information about

the extension and details of the various artifacts within
the extension.

/Entities/ The Entities folder contains zero or more entity
XML files organized in subfolders by entity type.

/lib/ The lib folder contains the JAR file, which includes
the custom Java classes written for the extension and
third-party JAR files required by the extension.

/ui/ The ui folder contains the files needed to define
custom widgets that are used when building and running
mashups.

You can name the zip file anything, but it must contain a valid metadata.xml
file in the root folder, and its artifacts must be placed in the correct location within
the zip file.

Metadata.xml File
The metadata.xml file contains information about the extension and details
for the various artifacts within the extension. The information in this file is used in
the import process in ThingWorx to create and initialize the entities.

Defining the Extension
The metadata.xml file must contain only one <ExtensionPackage>
element that provides details of the extension.
For example:
<Entities>
<ExtensionPackages>

12 Extension Development Guide

<ExtensionPackage
name=”MyExtension”
packageVersion="1.0.0"
vendor="ThingWorx – A PTC Business"
description="My Extension description"
minimumThingWorxVersion="7.1.0"
dependsOn="ExtensionOne:2.5.1,ExtensionTwo:1.2.0">

</ExtensionPackage>
</ExtensionPackages>
</Entities>

Tip
If you are using the Eclipse Plugin, the New ThingWorx Project action will
generate a new metadata.xml file and fill in the details. For more
information, see Creating an Extension Project.

<ExtensionPackage>
Attribute Description
name The name of the extension. This is a required

attribute whose value must follow the naming
convention for ThingWorx entities.

packageVersion The version of the extension. This is a required
attribute whose value must follow the
<major>.<minor>.<patch> format,
where each part of the version is numeric.
Extensions should follow the semantic
versioning rules outlined at http://www.semver.
org.

vendor The name of the organization that created the
extension. This is an optional attribute.

description Information about what the extension does.
This is an optional attribute that is displayed in
the Manage Extensions screen of Composer.

minimumThingWorxVersion Specifies the minimum version of ThingWorx
with which the extension is compatible. This is
a required attribute whose value must follow
the <major>.<minor>.<patch> format,
where each part of the version is numeric. If
you try to import the extension into a version of
ThingWorx that is older than what is specified
in this attribute, it will fail.

Creating Extensions 13

http://www.semver.org
http://www.semver.org

<ExtensionPackage>
Attribute Description
dependsOn A list of extensions on which the extension

depends. This is an optional attribute. When
specified, its value must be a comma-separated
list of extension names and versions in the
<name>:<major>.<minor>.<patch>
format, where each part of the version is
numeric. For example, dependsOn=
"ExtensionOne:2.5.1,ExtensionTwo:1.2.0".
If you try to import the extension into an
instance of ThingWorx that does not have these
extensions installed, it will fail.

migratorClass The fully-qualified Java class name of the
migrator that should be run when importing
data from prior versions of the extension. This
is an optional attribute. For more information,
see Adding an Extension Migrator.

Note
This attribute is supported in ThingWorx
7.1 and higher.

In addition to defining this extension information, the metadata.xml file also
contains information about other artifacts included in the extension.

Defining Thing Templates
Each Java-based thing template must have two entries in the metadata.xml
file:

• A <ThingPackage> element under the
<Entities><ThingPackages> element, which specifies the class name
of the thing template

• A <ThingTemplate> element under the
<Entities><ThingTemplates> element, which refers to the name of
the thing package

For example:
<Entities>
<ThingPackages>
<ThingPackage name="MyThingPackage"
description="A description"
className="com.acmecorp.things.MyThingTemplate" />

</ThingPackages>

14 Extension Development Guide

<ThingTemplates>
<ThingTemplate name="MyThingTemplate"
description="My Thing Template description"
thingPackage="MyThingPackage"
aspect.isEditableExtensionObject="false" />

</ThingTemplates>
</Entities>

Tip
If you are using the Eclipse Plugin, the New Thing Template action will
generate the necessary elements in the metadata.xml file and fill in the
details. For more information, see Creating Entities.

<ThingPackage> Attribute Description
name The name of the thing package. This is a

required attribute whose value must follow
the naming convention for ThingWorx
entities.

description Provides information about the thing
package. This is an optional attribute.

className The fully-qualified Java class name of the
ThingTemplate class that corresponds to
the thing package. This is a required
attribute.

<ThingTemplate> Attribute Description
name The name of the thing template. This is a

required attribute whose value must follow
the naming convention for ThingWorx
entities. This is the name that will be
displayed in Composer in the list of thing
templates.

description Provides information about the thing
package. This is an optional attribute.

Creating Extensions 15

<ThingTemplate> Attribute Description
thingPackage The name of the thing package that

corresponds to the thing template. It must
match the ThingPackage name attribute.
This is a required attribute.

aspect.isEditableExtensionObject Indicates if the entity can be edited in
ThingWorx Composer. This is an optional
attribute and defaults to false.

Note
This attribute is supported in ThingWorx
7.0 and higher.

Defining Thing Shapes
Each Java-based thing shape must have a <ThingShape> element under the
<Entities><ThingShapes> element, which specifies the class name of the
thing shape.
For example:
<Entities>
<ThingShapes>
<ThingShape name="MyThingShape"
description="My Thing Shape description"
className="com.acmecorp.things.MyThingShape"/>

</ThingShapes>
</Entities>

Tip
If you are using the Eclipse Plugin, the New Thing Shape action will generate
the necessary elements in the metadata.xml file and fill in the details. For
more information, see Creating Entities.

<ThingShape> Attribute Description
name The name of the thing shape. This is

a required attribute whose value must
follow the naming convention for
ThingWorx entities.

description Provides information about the thing
shape. This is an optional attribute.

16 Extension Development Guide

<ThingShape> Attribute Description
className The fully-qualified Java class name

of the ThingShape class. This is a
required attribute.

aspect.isEditableExtensionObject Indicates if the entity can be edited in
ThingWorx Composer. This is an
optional attribute and defaults to
false.

Note
This attribute is supported in
ThingWorx 7.0 and higher.

Defining Resources
Each Java-based resource must have a <Resource> element under the
<Entities><Resources> element, which specifies the class name of the
resource.
For example:
<Entities>
<Resources>
<Resource name="MyResource"
description="My Resource description"
className="com.acmecorp.resources.MyResource" />

</Resources>
</Entities>

Tip
If you are using the Eclipse Plugin, the New Resource action will generate the
necessary elements in the metadata.xml file and fill in the details. For
more information, see Creating Entities.

<Resource> Attribute Description
name The name of the resource. This is a

required attribute whose value must
follow the naming convention for
ThingWorx entities.

description Provides information about the
resource. This is an optional attribute.

Creating Extensions 17

<Resource> Attribute Description
className The fully-qualified Java class name of

the Resource class. This is a
required attribute.

aspect.isEditableExtensionObject Indicates if the entity can be edited in
ThingWorx Composer. This is an
optional attribute and defaults to false.

Note
This attribute is supported in
ThingWorx 7.0 and higher.

Defining Authenticators
Each Java-based authenticator must have an <Authenticator> element under
the <Entities><Authenticators> element, which specifies the class
name of the authenticator.
For example:
<Entities>
<Authenticators>
<Authenticator name="MyAuthenticator"
description="My Authenticator description"
className="com.acmecorp.authenticators.MyAuthenticator"
aspect.isEditableExtensionObject=”true” />

</Authenticators>
</Entities>

Tip
If you are using the Eclipse Plugin, the New Authenticator action will generate
the necessary elements in the metadata.xml file and fill in the details. For
more information, see Creating Entities.

<Authenticator> Attribute Description
name The name of the authenticator. This is

a required attribute whose value must
follow the naming convention for
ThingWorx entities.

description Provides information about the
authenticator. This is an optional
attribute.

18 Extension Development Guide

<Authenticator> Attribute Description
className The fully-qualified Java class name of

the Authenticator class. This is a
required attribute.

aspect.isEditableExtensionObject Indicates if the entity can be edited in
ThingWorx Composer after import.
This should be set to true so it is
enabled in Composer after import.

Tip
For more information about deploying and enabling authenticators after
import into ThingWorx, see the Authenticator Sample Extension Configuration
topic in the ThingWorx Help Center.

Defining Directory Services
Each Java-based directory service must have a <DirectoryService> element
under the <Entities><DirectoryServices> element, which specifies the
class name of the directory service.
For example:
<Entities>
<DirectoryServices>
<DirectoryService name="MyDirectoryService"
description="My Directory Service description"
className="com.acmecorp.resources.MyDirectoryService"
aspect.isEditableExtensionObject=”true” />

</DirectoryServices>
</Entities>

Tip
If you are using the Eclipse Plugin, the New Directory Service action will
generate the necessary elements in the metadata.xml file and fill in the
details. For more information, see Creating Entities.

Creating Extensions 19

<Directory Service> Attribute Description
name The name of the directory service.

This is a required attribute whose
value must follow the naming
convention for ThingWorx entities.

description Provides information about the
directory service. This is an optional
attribute.

className The fully-qualified Java class name of
the DirectoryService class.
This is a required attribute.

aspect.isEditableExtensionObject Indicates if the entity can be edited in
ThingWorx Composer after import.
This should be set to true so the entity
can be configured in Composer after
import.

Tip
For more information about creating a directory service, see the Directory
Services Authentication topic in the ThingWorx Help Center.

Defining Script Function Libraries
Each Java-based script function library must have a
<ScriptFunctionLibrary> element under the
<Entities><ScriptFunctionLibraries> element, which specifies the
class name of the script function library. For each function in the library,
<FunctionDefinition> elements must be added to specify the function’s
name, parameters, and return type.
For example:
<Entities>
<ScriptFunctionLibraries>
<ScriptFunctionLibrary name="MyScriptFunctionLibrary"
description="My Script Function Library description"
className=" com.acmecorp.sfl.MyScriptFunctionLibrary">
<FunctionDefinitions>
<FunctionDefinition name=”calculateIt”
description=”Performs a calculation”>
<ParameterDefinitions>
<FieldDefinition name=”parm1”
description=”The first parameter”

20 Extension Development Guide

baseType=”INTEGER”/>
<FieldDefinition name=”parm2”
description=”The second parameter”
baseType=”INTEGER”/>

</ParameterDefinitions>
<ResultType name=”resultingValue” baseType=”INTEGER”
description=”The return type”/>

</FunctionDefinition>
</FunctionDefinitions>

</ScriptFunctionLibrary>
</ScriptFunctionLibraries>
</Entities>

Tip
If you are using the Eclipse Plugin, the New Script Function action will
generate the necessary elements in the metadata.xml file and fill in the
details. Function definition elements must be added manually. For more
information, see Creating Entities.

<ScriptFunctionLibrary> Attribute Description
name The name of the script function

library. This is a required attribute
whose value must follow the naming
convention for ThingWorx entities.

description Provides information about the script
function library. This is an optional
attribute.

className The fully-qualified Java class name of
the ScriptFunctionLibrary
class. This is a required attribute.

<FunctionDefinition> Attribute Description
name The name of the function. This is a

required attribute whose value must
match the name of a corresponding
public static method in the
JavaScript Function Library class.

description Provides information about the
function. This description is displayed
in ThingWorx Composer.

Creating Extensions 21

<FieldDefinition> Attribute Description
name The name of the field. This is a

required attribute.
description Provides information about the

parameter. This description is
displayed in ThingWorx Composer.

baseType The base type of the field. This is a
required attribute whose value must
be a valid ThingWorx base type, such
as STRING or NUMBER. When you
create a property in Composer, you
can see the full list in the Base Type
dropdown. For more information, see
com.thingworx.types.BaseTypes in
the ThingWorx Platform API
Documentation topic in the
ThingWorx Help Center.

Note
The value must be uppercase.

<ResultType> Attribute Description
name The name of the return value. This is

a required attribute.
description Provides information about the return

value. This description is displayed in
ThingWorx Composer.

baseType The base type of the return value of
the method. This is a required
attribute whose value must be a valid
ThingWorx base type, such as
STRING or NUMBER. When you
create a property in Composer, you
can see the full list in the Base Type
dropdown. For more information, see
com.thingworx.types.BaseTypes in
the ThingWorx Platform API
Documentation topic in the
ThingWorx Help Center.

Note
The value must be uppercase.

22 Extension Development Guide

Defining JAR Resources
For each JAR file included in the extension, an entry must be added in the
metadata.xml file. The <JarResources> element contains a reference to the
JAR that contains the extension’s Java-based entity classes. It is used to reference
third-party JAR files on which the extension depends.
For example:
<ExtensionPackages>
<ExtensionPackage ...>
<JarResources>
<FileResource type="JAR" file="MyExtension.jar"
description="Contains the extension’s custom classes" />
<FileResource type="JAR" file="ThirdPartyLib.jar
description="My Extension depends on this JAR" />

</JarResources>
</ExtensionPackage>
</ExtensionPackages>

Tip
If you are using the Eclipse Plugin, the New Jar Resource action will generate
the necessary elements in the metadata.xml file and fill in the details. For
more information, see Creating Entities.

Caution
Do not include third-party JAR files in your extension that are already
included in the ThingWorx Platform.

Entities Created in ThingWorx Composer
You can create entities in ThingWorx Composer for inclusion in the extension
(mashups) and export them using the Export to File (XML Format) or Export Source
Control Entities actions. An extension developer can include the XML files in the
extension zip file under the Entities folder.

Tip
Tag your extension entities during development so it’s easier to export them
together.

Creating Extensions 23

Each XML file should be placed in the folder structure that mirrors the element
hierarchy in the XML file itself. For example, a thing shape is defined in the XML
file in the element hierarchy <Entities> <ThingShapes>
<ThingShape>, so the XML file should be placed in the Entities\
ThingShapes folder in the extension.
No changes to the metadata.xml file are needed when including Composer-created
entities in an extension.
An example of the Entities folder structure is as follows:
/Entities
/Mashups
/MyMashup.xml
/ThingShapes
/MyThingShape1.xml
/MyThingShape2.xml
/ThingTemplates
/MyThingTemplate.xml

Tip
The easiest way to add Composer-created entities is to tag entities created for
the extension and export them using the Export Source Control Entities action.

In Composer, use Import/Export > Export > Source Control
Entities to export your extension entities to an /Entities folder at the
root of the extension package structure. The resulting Entities folder under
ThingworxStorage/repository/<RepositoryName> can be
placed directly into the extension zip file.

Tip
If you are using the Eclipse Plugin, the Import ThingWorx Entities action places
the files in the correct location in the project. For more information, see
Importing Composer-Created Entities.

Java-Based Entities
Java-based entities created in an extension are basically the same as those created
in ThingWorx Composer. They can also define services, properties, events,
configuration parameters, and so on.

24 Extension Development Guide

The main difference between the two types of entities is that Composer-created
entities use JavaScript for services, and their source code is visible in Composer.
Java-based entities use Java for services, and the source code is not visible in
Composer. Java-based entities can also define configuration values and lifecycle
behavior.

ThingWorx Extension SDK
Java-based entities created in extensions must use the ThingWorx Extension SDK
to access supported ThingWorx Platform classes and APIs. The SDK exposes
many built-in services that make manipulating Platform objects easier. It also
includes Javadoc documentation to aid in the development process.

API Compatibility
Only service APIs (consumable from a RESTAPI) are supported in ThingWorx
6.5 and prior releases.
Java classes and methods may not be backward compatible from ThingWorx 6.6
and future releases.
New APIs may be added in future releases. All supported APIs will be included in
the Javadoc. Their behavior should not change between releases. If the behavior of
an API changes, it will be deprecated and an alternative pattern will be provided
in the Javadoc.

Creating Thing Templates
To create a thing template, create a Java class that extends com.thingworx.thing.
Thing and update the metadata.xml file. Each thing template needs the following
entries in the metadata.xml file:
• A <ThingPackage> element
• A <ThingTemplate> element
For more information, see metadata.xml file.
To define a base thing template, add the following annotation to the Java class:
@ThingworxBaseTemplateDefinition(name="RemoteThing")

If not specified, the base thing template defaults to GenericThing.
To define implemented thing shapes, add the following annotations to the Java
class:
@ThingworxImplementedShapeDefinitions(shapes = {
@ThingworxImplementedShapeDefinition(name = "ExampleShape1"),
@ThingworxImplementedShapeDefinition(name = "ExampleShape2")

})

Creating Extensions 25

Once the class is created, you can add services, properties, configuration tables,
events, and subscriptions to the thing template. For more information, see Adding
Services, Properties, and Other Methods to an Entity.

Tip
If you are using the Eclipse Plugin, the New Thing Template action will
generate the Java source file with the appropriate annotations and
automatically update the metadata.xml file. For more information, see
Creating Entities.

You can override the following methods from the thing superclass to add custom
functionality in the thing template (see the Javadoc documentation for the com.
thingworx.things.Thing class for more information):

• protected void cleanupThing() throws Exception;

• protected void initializeThing() throws Exception;

• protected void
preprocessSetPropertyVTQ(ThingProperty, VTQ, boolean)
throws Exception;

• protected void processStartNotification();

• protected void startThing() throws Exception;

• protected void stopThing() throws Exception;

For example, you can override the initializeThing() method. This method
is called when the thing is created or saved. It is used to set up any functionality
needed for your Java code to function properly. It may be used to create a data
table and associate it with your thing when the thing is created. This is
accomplished by checking for the existence of the data table before creating it,
since the same method is called when the thing is saved.

Creating Thing Shapes
To create a thing shape, create a Java class that extends java.lang.Object (it
does not need to extend any ThingWorx classes) and update the metadata.xml file.
Each thing shape must have a <ThingShape> element. For more information,
see metadata.xml File.
Once the class is created, you can add services, properties, events, and
subscriptions to the thing shape. For more information, see Adding Services,
Properties, and Other Methods to Entities.

26 Extension Development Guide

Tip
If you are using the Eclipse Plugin, the New Thing Shape action will generate
the Java source file with the appropriate annotations and automatically update
the metadata.xml file. For more information, see Creating Entities.

Creating Resources
Resources are one of the simplest parts of an extension to create but can offer very
powerful functionality. They are designed to expose services with no stateful
behavior. You can call the service from anywhere, but you need to provide data
that could vary in different scenarios. No properties, configurations, or events are
associated with a resource. Resources are useful for things like encoding,
formatting, and complex math equations.
To create a resource, create a Java class that extends
com.thingworx.resources.Resource and update the metadata.xml file.
Each resource must have a <Resource> element. For more information, see
metadata.xml file.
Once the class is created, services can be added to the resource (since resources
are stateless, do not add properties, configuration tables, subscriptions, and
events). For more information, see Adding Services, Properties, and Other
Methods to Entities.

Tip
If you are using the Eclipse Plugin, the New Resource action will generate the
Java source file with the appropriate annotations and automatically update the
metadata.xml file. For more information, see Creating Entities.

Creating Authenticators
To create an authenticator, create a Java class that extends
com.thingworx.security.authentication.CustomAuthentica
tor and update the metadata.xml file. Each authenticator must have an
<Authenticator> element in the metadata.xml file. For more information, see
metadata.xml File.

Creating Extensions 27

The following methods need to be implemented. For more information, see the
Javadoc for the
com.thingworx.security.authentication.IAuthenticator
interface and the Authenticator Sample Extension Configuration topic in the
ThingWorx Help Center.

• public void authenticate(HttpServletRequest,
HttpServletResponse) throws AuthenticatorException;

• public void
issueAuthenticationChallenge(HttpServletRequest,
HttpServletResponse) throws AuthenticatorException;

• public boolean matchesAuthRequest(HttpServletRequest)
throws AuthenticatorException;

Note
The parameter classes and exceptions used in these methods are part of the
javax.servlet third-party JAR, which must be in the build path for the custom
authenticator to compile. However, this JAR is a compile-time dependency
only and must not be added as part of the extension itself.

Tip
If you are using the Eclipse Plugin, the New Authenticator action will generate
the Java source file with the appropriate annotations and automatically update
the metadata.xml file. It will also prompt for the location of the Web server to
automatically update the build path with the javax.servlet JAR. For more
information, see Creating Entities.

Creating Directory Services
To create a directory service, create a Java class that extends
com.thingworx.security.directoryservices.DirectorySer
vice and update the metadata.xml file. Each directory service must have a
<DirectoryService> element in the metadata.xml file. For more
information, see metadata.xml File.
The following methods must be implemented (see Javadoc documentation for the
com.thingworx.security.directoryservices.DirectorySer
vice interface):

28 Extension Development Guide

• public void ValidateCredentials(User user, String
password) throws Exception;

• public void ValidateCredentials(User user, String
password, HttpServletRequest req) throws Exception;

Note
The HttpServletRequest parameter class used in these methods is part of the
javax.servlet third-party JAR which must be in the build path for the
custom directory service to compile. However, this JAR is a compile-time
dependency only and must not be added as part of the extension itself.

Tip
If you are using the Eclipse Plugin, the New Directory Service action will
generate the Java source file with the appropriate annotations and
automatically update the metadata.xml file. For more information, see
Creating Entities.

Tip
For more information about creating directory services, see the Directory
Services Authentication topic in the ThingWorx Help Center.

Creating Script Function Libraries
To create a script function library, create a Java class that extends
java.lang.Object and update the metadata.xml file.
In the Java class, define public static methods that provide the desired
functionality. Each method must have a signature of the form:
public static Object doSomething(
org.mozilla.javascript.Context cx,
org.mozilla.javascript.Scriptable thisObj,
Object[] args,
org.mozilla.javascript.Function funObj) throws Exception {

// do something and return something
}

Creating Extensions 29

The org.mozilla.javascript classes are part of the Rhino JavaScript
library, which must be part of the extension’s build path.
Each script function library must have a <ScriptFunctionLibrary>
element in the metadata.xml file and a corresponding
<FunctionDefinition> element for each method with the appropriate sub-
elements defining the parameters and return type. For more information, see
metadata.xml File.

Tip
If you are using the Eclipse Plugin, the New Script Function Library action will
generate the Java source file with the appropriate annotations and
automatically update the metadata.xml file. For more information, see
Creating Entities.

Adding Services, Properties, and Other Methods to
Entities
One of the main tasks when creating an extension is to add custom behavior to
entities by defining services, properties, events, and/or subscriptions on them.

Services
ThingWorx Platform services are chunks of code that execute specific
functionality and are exposed as RESTAPI calls. They are used internally in the
Platform, exposed to be used by mashups, and can be reached from any external
source with the proper credentials. In Java code, annotations are used to mark a
Java method as the entry point for a service.
Although methods are used to define services on the ThingWorx Platform, all
methods are not automatically considered services. There can be many internal
methods inside your Java code that add functionality to the extension, but only the
methods marked with the proper annotations will be exposed as a service on the
Platform.

Tip
If you are using the Eclipse Plugin, the Add Service action will add the
Service method and the necessary annotations described below to the Java
source file. For more information, see Adding Services, Properties,
Configuration Tables, Subscriptions, and Events.

30 Extension Development Guide

Defining Services
Services are defined by adding annotations to the method of a class. The
annotation identifies that this method should be treated as a ThingWorx service
and defines the inputs and outputs of the service. The following annotations are
part of a service definition:

• @ThingworxServiceDefinition

• @ThingworxServiceResult

• @ThingworxServiceParameters

The @ThingworxServiceDefinition Annotation
The @ThingworxServiceDefinition annotation defines the name and
description of a service and associates that service with a given method. It is
placed above a method definition.
The most commonly used attributes of this annotation are listed below. For a
complete set of attributes, see the Javadoc documentation for the
com.thingworx.metadata.annotations.ThingworxServiceDefi
nition class.
@ThingworxServiceDefinition
Attribute

Description

name The name of the service. It is standard
convention for service names to start with a
capital letter. The name of the service must
be identical to the name of the method. This
is a required attribute.

description A short description for the service. The
description should provide information on
functionality of the service and other
pertinent information for users. This
description will appear in a tool tip when
hovering over the service name in
ThingWorx Composer.

category A category that conceptually groups related
services. This is an optional attribute.

The @ThingworxServiceResult Annotation
The @ThingworxServiceResult annotation defines the output type of the
service. This base type is treated the same as property definitions and is case-
sensitive. For some base types, such as INFOTABLE or THINGNAME, you may need
to add aspects to define more complex types.

Creating Extensions 31

The most commonly used attributes of this annotation are listed below. For a
complete set of attributes, see the Javadoc documentation for the
com.thingworx.metadata.annotations.ThingworxServiceRe
sult class.
@ThingworxServiceResult
Attribute

Description

name The name of the result as referenced by other
services when invoked via the RESTAPI or the
processServiceRequest() methods. If
the base type of the service is INFOTABLE, the
name is ignored. Otherwise, the result of the
service is an info table with one column whose
key is equal to the name parameter. This is a
required attribute.

description A short description for the service result. This
description appears when viewing the service
details in Composer.

baseType The base type for the result. When defining the
base type for the result, the matching Java type
must be used for the method's result. This is a
required attribute whose value must be a valid
ThingWorx type such as STRING or
NUMBER. When creating a property in
Composer, you can see the full list in the Base
Type dropdown list. See
com.thingworx.types.BaseTypes in
the ThingWorx Platform API
Documentation topic of the ThingWorx Help
Center.

Note
The value must be uppercase.

In the following code snippet, aspects were needed to define the data shape of an
info table. If the base type is STRING, these aspects would not be needed. This
example is showing the service definition entered above a method:
// Access a Resource
@ThingworxServiceDefinition(name="AccessAResource",
description="Execute a service of a resource")
@ThingworxServiceResult(name="result",
description="Matching entries", baseType= "INFOTABLE",
aspects={"dataShape:RootEntityList"})
public InfoTable AccessAResource() throws Exception {
}

32 Extension Development Guide

The @ThingworxServiceParameters Annotation
ThingworxServiceParameters are used to associate ThingWorx inputs with
method input parameters. This defines what input types will be available for
binding in ThingWorx Platform. The annotations should be entered before the
parameter definition, inside the method’s declaration.
For example, the following code snippet shows service parameters added to a
method’s input parameters:
// Property set of another Thing
@ThingworxServiceDefinition(name="SetHelloWorldProperty",
description="Set a property on Hello World")
public void SetHelloWorldProperty(
@ThingworxServiceParameter(name="thingToSet",
description="The thing you're setting", baseType="THINGNAME",
aspects={"thingTemplate:HelloWorld"}) String thingToSet,
@ThingworxServiceParameter(name="numberPropertyToSet",
description="The property name you're setting",
baseType="STRING") String numberPropertyToSet,
@ThingworxServiceParameter(name="numberValueToSet",
description="The property value you're setting",
baseType="NUMBER") Double numberValueToSet) throws Exception {

Thing helloThing = ThingUtilities.findThing(thingToSet);
helloThing.setPropertyValue(numberPropertyToSet,
new NumberPrimitive(numberValueToSet));

}

For more information, see the Javadoc documentation for
com.thingworx.metadata.annotations.ThingworxServicePara
meter.

Properties
Properties are defined using the @ThingworxPropertyDefinitions
annotation. This annotation specifies a list of properties associated with the thing
template or thing shape that is being defined. Each property uses its own
annotation to define its name, description, baseType, and aspects. See
the HelloWorldThing example.

Note
If you are using the Eclipse Plugin, the Add Property action will add the
necessary property annotations described below to the Java source file. See
Adding Services, Properties, Configuration Tables, Subscriptions, and Events
for more information.

Creating Extensions 33

@ThingworxPropertyDefinition
Attribute

Description

name The name of the property
description A string with a unique description for

this property
baseType The base type of the property. The base

type of the field. This is a required
attribute whose value must be a valid
ThingWorx type such as STRING or
NUMBER. When creating a property in
Composer, you can see the full list in
the Base Type dropdown. See com.
thingworx.types.BaseTypes in the
ThingWorx Platform API
Documentation topic of the ThingWorx
Help Center.

Note
The value must be uppercase.

aspects Metadata for the given property. This
parameter defines various settings for
the property in the form of key-value
pairs, such as minValue or isPersistent.
All aspects are defined using camel
case. You can find the full list of
aspects you can set by viewing the
property creation window in Composer.
Examples:
"isPersistent:true" or
"dataShape:myDataShape" or
"thingTemplate:myTemplate"

Tip
Complex data types like
INFOTABLE require extra details
associated with the type. These are
defined in the aspects section using
camel case for the name.

For example, the following code snippet shows property definitions above the
class definition:
@ThingworxPropertyDefinitions(properties = {
@ThingworxPropertyDefinition(name="StringProperty1",

34 Extension Development Guide

description="Sample string property", baseType="STRING",
aspects={"isPersistent:false","isReadOnly:false"}),
@ThingworxPropertyDefinition(name="NumberProperty1",
description="Sample number property", baseType="NUMBER",
aspects={"isPersistent:false","isReadOnly:false"}),

})
public class HelloWorldThing extends Thing {
}

The image below shows the fields available when you are adding a new property
in ThingWorx Composer:

For more information, see Javadoc for
com.thingworx.metadata.annotations.ThingworxPropertyDe
finition.

Configuration Tables
Configuration tables are used for thing templates to store values similar to
properties that do not change often. The most common use of configuration tables
is to store credentials and host information for an external resource. These are
defined in a similar way to properties.
To use configurations, define a list of configuration tables. Each of these tables
has a name, a description, and shows if it can store multiple rows. Similar to
properties, some configuration values have aspects associated with them as well.
For more information, see Javadoc documentation for
com.thingworx.metadata.annotations.ThingworxConfigura
tionTableDefinition.

Tip
If you are using the Eclipse Plugin, the Add Configuration Table action will add
the annotations described below to the Java source file. For more information,
see Adding Services, Properties, Configuration Tables, Subscriptions, and
Events.

Creating Extensions 35

For example, this code snippet shows the configuration table definitions located
above the class definition:
@ThingworxConfigurationTableDefinitions(tables = {

@ThingworxConfigurationTableDefinition(

name="ConfigTableExample1",

description="Example 1 config table", isMultiRow=false,

dataShape = @ThingworxDataShapeDefinition(fields = {

@ThingworxFieldDefinition(name="field1",

description="",baseType="STRING"),

@ThingworxFieldDefinition(name="field2",

description="",baseType="NUMBER"),

@ThingworxFieldDefinition(name="field3",

description="",baseType="BOOLEAN"),

@ThingworxFieldDefinition(name="field4",

description="",baseType="USERNAME"),

})),

@ThingworxConfigurationTableDefinition(

name="ConfigTableExample2",

description="Example 2 config table", isMultiRow=true,

dataShape = @ThingworxDataShapeDefinition(fields = {

@ThingworxFieldDefinition(name="columnA",

description="",baseType="STRING"),

@ThingworxFieldDefinition(name="columnB",

description="",baseType="NUMBER"),

@ThingworxFieldDefinition(name="columnC",

description="",baseType="BOOLEAN"),

@ThingworxFieldDefinition(name="columnD",

description="",baseType="USERNAME"),

}))

})

public class GoodByeThing extends Thing {

}

Here is an example of the above code rendered in the Composer UI. This shows
the two configuration tables created with the GoodByeThing template:

36 Extension Development Guide

Events
You can define custom events in your extension that occur when certain
conditions are met. These events can be subscribed to by other entities using the
same mechanisms for built-in events. Events can trigger custom functionality.
They require a predefined data shape. The data shape stores data associated with
the event, which can be accessed by a subscription.
For more information, see the Javadoc documentation for
com.thingworx.metadata.annotations.ThingworxEventDefini
tion.

Tip
If you are using the Eclipse Plugin, the Add Event action will add the
necessary annotations described below to the Java source file. For more
information, see Adding Services, Properties, Configuration Tables,
Subscriptions, and Events.

Note
If the data shape is custom, it must be included in the Entities folder to be
recognized on import. For more information, see Entities Created in
Composer.

For example, the following code snippet defines an event:
@ThingworxEventDefinitions(events = {

@ThingworxEventDefinition(name="SalutationSent",

description="Salutation sent event",

dataShape="SalutationSentEvent")

Subscriptions
You can add subscriptions to an entity in an extension to perform custom behavior
when an event is fired. To add a subscription, use the
@ThingworxSubscriptions annotation.

Creating Extensions 37

Tip
If you are using the Eclipse Plugin, the Add Subscriptions action will add the
necessary annotations described below to the Java source file. For more
information, see Adding Services, Properties, Configuration Tables,
Subscriptions, and Events.

@ ThingworxSubscription
Attribute

Description

source The name of the entity, which is the source of
the event. A blank value indicates that the
event originates from the entity itself.

eventName The name of the event to which you want to
subscribe.

sourceProperty The name of the property associated with the
event. It’s only applicable for the Alert,
AlertAck, AlertReset, and DataChange events.

handler The name of the service that should be
invoked whenever the subscription receives an
event.
The service should have the following
signature and be annotated appropriately as a
ThingWorx service:
public void
HandleEvent(InfoTable eventData,
String eventName, DateTime
eventTime, String source, String
sourceProperty)

enabled Indicates if the subscription should listen for
events

For more information, see the Javadoc documentation for
com.thingworx.metadata.annotations.ThingworxSubscrip
tion.
For example:
@ThingworxSubscriptions(subscriptions = {
@ThingworxSubscription(source = "", eventName = "MyEvent",
sourceProperty = "", handler = "MyService", enabled = "true")
})

38 Extension Development Guide

Extension Migrators
When a new version of an extension contains model changes for one or more of
its entities, the previous version of the extension and any entities created from that
extension must be deleted before installing the new version of the extension. To
avoid having to recreate the entities after the new extension is installed, you can
include an extension migrator with the extension, which imports the entities
created with the previous version.
To install a new version of an extension in this case, do the following:

1. Export all entities and data from the ThingWorx system.
2. Install the new version of the extension on a clean ThingWorx system.
3. Import the entities and data that were exported from the original system.
The extension migrator will run during the import process so that the entities from
the previous version will be imported properly and match the model from the new
extension.
To create a custom migrator, create a Java class that extends
com.thingworx.migration.ExtensionMigratorBase and update the
metadata.xml file by setting the migratorClass attribute on the
<ExtensionPackage> element. For more information, see metadata.xml File.

Tip
If you are using the Eclipse Plugin, the New Extension Migrator action will
generate the Java source file with the appropriate annotations and
automatically update the metadata.xml file. For more information, see Adding
an Extension Migrator.

The following method must be implemented in the migrator to complete the
migration depending on the changes between the versions of the extension. See
the Javadoc documentation for the ExtensionMigratorBase class for more
information.
public void migrate(ImportedEntityCollection imports)
throws Exception;

When importing the entities into the system containing the new version of the
extension, the migrator will run.

Creating Extensions 39

Note
The extension migrator will only be invoked when importing all entities from
the previous ThingWorx system. It will not be invoked when importing
individual or subsets of entities.

Note
Extension migrators are designed for migrating entities only. Stream data
associated with extension entities must be updated by other means before
importing into the new system.

Third-Party JAR Files
The /lib folder contains the JAR file including the custom Java classes written
for the extension and additional third-party JAR files required by the extension.
For example:
/lib
/MyExtension.jar
/ThirdPartyLib.jar

For each of these JAR files, you must create an entry in the metadata.xml file. For
more information, see metadata.xml File.

Tip
If you are using the Eclipse Plugin, the New Jar Resource action will update
the metadata.xml file automatically. For more information, see Adding Third-
Party JAR Files.

Caution
Do not include third-party JAR files from your extension that are already
included in the ThingWorx Platform.

40 Extension Development Guide

Adding Custom Widgets
The /ui folder contains the files needed to define custom widgets that are used
when building and running mashups. Each widget should be placed in its own
subfolder of /ui. The following files are needed to define a widget:

• <widgetname>.ide.css

Style sheet file that defines the look and feel of the widget in the Mashup
Builder

• <widgetname>.ide.js

JavaScript file that defines the widget and its behavior in the Mashup Builder
• <widgetname>.ide.png

Icon used for the widget in the Widgets tab in the Mashup Builder, which
should be 16 by 16 pixels

• <widgetname>.runtime.css

Style sheet file that defines the look and feel of the widget when viewing the
mashup

• <widgetname>.runtime.js

JavaScript file that defines the widget and its behavior when viewing the
mashup

Tip
If you are using the Eclipse Plugin, the New Widget action will generate the
source files and automatically update the metadata.xml file. For more
information, see Creating Widgets.

For an example of a widget and more information about the functions that a
widget can implement and the APIs that it can call, see Widget Implementation
Guide.

Third-Party JavaScript Libraries
If the custom widget needs to use third-party JavaScript libraries, the best practice
is to create a subfolder in the widget folder (for example, /ui/
<widgetname>/<jslibrary>/) and put the third-party library files there.
These files can be referenced from the ide.js and runtime.js files using the
following relative path:
../Common/extensions/<extensionname>/ui/<widgetname>/<jslibrary>/

Creating Extensions 41

Extension Import and Management
Importing an Extension into ThingWorx
Once an extension is packaged correctly, you can import it using ThingWorx
Composer:
1. Go to Import/Export ▶▶ Extensions ▶▶ Import.

The Import Extensions screen appears.
2. Click Choose File to select the .zip file for your extension.
3. If you want to check the extension before importing, click Validate.

Validation results appear and any errors are described.
4. Click Import.

If the extension can be imported without error, an Import Successful message
appears. The ThingWorx Platform prompts you to refresh the window to load
the new functionality.

Note
If a menu is imported in an extension, the Group Association property on
menu and the Groups property on menu items are editable. If you import an
updated version of the extension that contains the menu, changes made in
ThingWorx on page will be merged with any changes that were made in the
extension.

Note
Configuration tables that are imported in an extension are editable. If you
import an updated version of an extension that contains a configuration table,
changes made in ThingWorx on page will be merged with any changes that
were made in the extension.

Removing Old Versions and Uploading New Versions
The process of developing extensions involves multiple iterations of importing an
extension, testing it, and making changes.
To remove an extension, do the following:
1. Go to Import/Export ▶▶ Extensions ▶▶Manage.

42 Extension Development Guide

The Extension Manager screen appears.
2. On the Extension Manager screen, select the extension in the list of installed

extension packages and click Delete Extension.

Note
Before you remove the extension, you must delete new entities that reference
the entities provided by the extension. You can export these entities first so
that you can import them after the new version of the extension is installed.

Java-based entities from the extension are loaded into memory by the Platform
every time you upload an extension. Therefore, each class will remain there, even
after you remove the extension.

Tip
To avoid clashing versions of the same class, restart Tomcat between version
changes in order to remove the classes that were previously loaded in the
Platform.

If there are bugs in the Java code for entities provided by the extension,
ThingWorx may be unable to completely remove them. If this occurs, delete the
ThingworxStorage directory between version changes since you may be
unable to properly remove an extension. If there is anything on your development
Platform instance that you want to save, we recommend that you Back Up Storage
Before Delete before testing new code.

Entity Characteristic Support
The following table shows which entities support Services, Properties,
Configuration Tables, Subscriptions, and Events:

Entity
Type

Services Properties Configu-
ration
Tables

Subscrip-
tions

Events

Thing
Template

Supported Supported Supported Supported Supported

Thing
Shape

Supported Supported Supported Supported

Resource Supported
Extension
Migrator

Creating Extensions 43

Entity
Type

Services Properties Configu-
ration
Tables

Subscrip-
tions

Events

Authentica-
tor

Supported Supported

Directory
Service

Supported

Script
Function
Library

44 Extension Development Guide

4
Using the Eclipse Plugin

Installing the Eclipse Plugin for ThingWorx Extension Development46
Creating an Extension Project ..46
Importing Existing Extensions...47
Creating Entities..48
Adding Services, Properties, Configuration Tables, Subscriptions, and Events48
Creating Widgets...48
Adding Third-Party JAR Files ...49
Adding an Extension Migrator...49
Importing Composer-Created Entities ...49
Building Extensions ...50
Deleting Entities and Widgets...50

45

Installing the Eclipse Plugin for
ThingWorx Extension Development
To install the plugin for ThingWorx Extension Development into your local
instance of the Eclipse IDE for Java EE Developers, Mars 4.5 release or newer, do
the following:

1. Download the Eclipse Plugin for ThingWorx Extensions zip file
from the ThingWorx Marketplace.

2. Open Eclipse and choose a workspace.
3. Choose Help ▶▶ Install New Software....

The Install screen appears.
4. Click Add....

The Add Repository screen appears.
5. Choose the download location for the zip file (for example, thingworx-

eclipse-plugin-[version].zip).
6. Select ThingWorx Extension Builder.

You may have to deselect the Group items by category checkbox for the
ThingWorx Extension Builder plugin to appear in the list.

7. Click Next.
8. Accept the license and finish the installation.
9. Click OK to acknowledge the Eclipse security warning.
10. Restart Eclipse.
11. To verify your install in Eclipse, choose Help ▶▶ Installation Details. ThingWorx

Extension Builder appears in the list of installed software.

Creating an Extension Project
To get started using the Eclipse Plugin for ThingWorx Extension Development, do
the following:

1. In Eclipse, choose File ▶▶ New ▶▶ Project....
2. In the New Project screen, expand the ThingWorx menu, select ThingWorx

Extension Project, and click Next.
3. Enter a project name and browse to and select the latest ThingWorx-

Extension-SDK-[version]-latest.zip file.
4. Select Gradle or Ant as the build framework for the extension.

46 Extension Development Guide

Note
To use Gradle to build the extension, the Gradle STS plugin must be
installed in Eclipse. Only the Gradle STS plugin is currently supported.

A build file corresponding to the selected framework is created. For more
information, see Building the Extension.

5. You can enter a vendor name, update the package version, and then click
Finish.

The project appears in the Package Explorer, and you are now working in the
ThingWorx Extension perspective.

6. To view and edit the properties for your project, right-click your project folder
in the Package Explorer and choose Properties.

On the Properties screen under the ThingWorx Extension menu, you can enter
a list of extensions on which your extension depends and their versions in the
Depends On Extensions field. For example, abc-
extension:2.1.0,xyz-extension:1.5.4.

Importing Existing Extensions
To import an existing extension into the plugin, do the following:

1. In Eclipse, make sure you are in the ThingWorx Extension perspective. To do
so, choose Window ▶▶ Perspective ▶▶ Open Perspective ▶▶ ThingWorx Extension.

2. Choose File ▶▶ Import.
3. On the Import screen, choose ThingWorx ▶▶ Extension Project and click Next.
4. Browse to and select your extension zip file.
5. Select the latest Thingworx-Extension-SDK-

[version]–latest.zip file and click Finish.

Your project appears in the Package Explorer.

Note
If you want to update the existing source code, you must import the source
files into the Eclipse project.

6. To view and edit the properties for your project, right-click your project folder
in the Package Explorer and choose Properties.

Using the Eclipse Plugin 47

Creating Entities
1. To create an entity, choose the ThingWorx menu and select the entity type you

want to create.
2. Select or enter your source folder and package.
3. Enter a name.
4. If you want to edit the aspects of your entity, click Next and edit the available

aspects. Or, to use the defaults, click Finish.

The aspects will be different for each entity type.

The Java source file is created for you in the specified package and the
metadata.xml file is updated automatically.

Adding Services, Properties,
Configuration Tables, Subscriptions, and
Events
To add services, properties, and other annotations to an entity, do the following:
1. In Package Explorer, right-click on the Java file and choose the ThingWorx

Source menu.

OR

In the Java editor of the entity, right-click to access the ThingWorx Source
menu.

From the submenu, you can choose to add a service, property, configuration
table, subscription, or event.

2. Enter the necessary information in the wizard and click Finish.

The Java and metadata.xml files are updated with the necessary annotations
and XML elements.

Creating Widgets
1. Choose the ThingWorx menu and select New Widget.
2. Select the parent project.
3. Enter a name and description.
4. Click Finish.

A new folder under the /ui folder is created and contains the JavaScript and
CSS files for the widget. The metadata.xml file is updated automatically.

48 Extension Development Guide

The generated JavaScript files contain a minimal implementation of the functions
needed to produce a working widget. For more information, see Adding Custom
Widgets and Appendix B: Widget Implementation Guide.

Adding Third-Party JAR Files
1. Choose the Widget menu and select New Jar Resource.
2. Select the parent project.
3. Browse to and select the JAR file you want to add, and enter a description.
4. Click Finish.

The JAR file is added to the /lib folder and the metadata.xml file is updated
automatically.

Adding an Extension Migrator
1. To create a migrator class for the extension, choose the ThingWorx menu and

select New Extension Migrator.
2. Select or enter your source folder and package.
3. Enter a name.
4. Click Finish.

The Java source file is created and the metadata.xml file is updated
automatically.

Note
If a migrator has already been created, the previous migrator class name will
be replaced in the metadata.xml file with the new migrator class name. The
previous migrator Java file will not be changed.

Importing Composer-Created Entities
1. Choose File ▶▶ Import.
2. On the Import screen, choose ThingWorx ▶▶ Entities and click Next.
3. Browse to the folder that contains the entity folders that were exported from

Composer (for example, ThingworxStorage/repository/
<RepositoryName>/<EntitiesFolder>).

Using the Eclipse Plugin 49

4. If necessary, select or deselect individual XML files to be imported.
5. Select the project into which you want to import and click Finish.

The selected XML files are imported under the /Entities folder in the
extension project.

Tip
When exporting entities from Composer, you should tag all entities created for
the extension and then export them using the Export Source Control Entities
action. In the Export Source Control Entities window, specify the tag and a file
repository and enter /Entities as the path. You can select the resulting
ThingworxStorage/repository/<RepositoryName>/
Entities folder in the Import wizard in Eclipse.

Building Extensions
Gradle Build
In the Package Explorer, right-click build.gradle and choose Run As ▶▶ Gradle
Build.
If the Edit Configuration window appears, enter clean build in the task editor,
click Apply and then Run.
After refreshing your project, a zip file appears under build ▶▶ distributions. This is
a working extension that you can import into ThingWorx.

Ant Build
In the Package Explorer, right-click build-extension.xml and choose Run As ▶▶ Ant
Build.
After refreshing your project, a zip file appears under build ▶▶ distributions. This is
a working extension that you can import into ThingWorx.

Deleting Entities and Widgets
1. In the Package Explorer, select the source file to be deleted and press Delete

or right-click and select Delete from the menu.

The delete confirmation window appears.
2. To see what changes will occur, click Preview, or click OK to delete the file.
The file is deleted from the project and the metadata.xml file is updated.

50 Extension Development Guide

Note
When you delete one of the widget files generated by the plugin, the widget
folder and its contents are deleted. To keep a file that was manually added to
the widget folder, use the Preview option to deselect the files and folders so
they are not deleted.

Tip
The XML definitions in the metadata.xml file must be in sync with the
contents of the extension. If there is an entry in metadata.xml file that is
missing a corresponding entity source file, the extension will not import
correctly. Therefore, do not deselect the Remove XML definition from project’s
metadata.xml option in the Preview window.

Using the Eclipse Plugin 51

5
Best Practices

Use the Eclipse Plugin ...54
The Golden Rule: Use as Few External jars as Possible...54
Develop on a Clean Platform Instance ..54
Back Up Storage Before Delete ..54
Logging ..55

There may be many different ways to accomplish a goal in extensions. The
following section outlines best practices for developing successful extensions.

53

Use the Eclipse Plugin
The Eclipse plugin makes it easier to develop and build extensions by providing
actions to automatically generate source files, annotations, and methods and
update the metadata file to ensure proper configuration of the extension. These
features allow developers to focus on developing functionality in their extension,
rather than worrying about the getting the syntax and format of annotations and
the metadata file correct.

The Golden Rule: Use as Few External
jars as Possible
Though ThingWorx allows the users to include third-party libraries in their code,
it is recommended that you avoid common jars as much as you can. You should
use the jars that are packaged with the SDK (for example, the slf4j logger) when
applicable. The nature of the Platform development process allows for multiple
sources to attempt to use the same jar files. When this happens, there will either be
a conflict when uploading an extension to the Platform, or functionality will be
different because the wrong version is used. This leads to future versions of the
Platform requiring updates to extensions to allow them to work. Similarly, it may
mean that a customer cannot use your extension with someone else’s extension at
the same time.

Develop on a Clean Platform Instance
ThingWorx does not provide safeguards or sand-boxing of your code’s execution.
It is possible to put your environment in an unstable state. You may see some
errors in the development process which will require you to restart Tomcat
(always try this first). Occasionally you may even be forced to remove the
ThingworxStorage directory completely. For this reason it is recommended
that you develop on a clean instance so that no work is lost by removing the
ThingWorxStorage directory.

Back Up Storage Before Delete
To back up your current ThingworxStorage directory, rename the directory.
This will save the current status and a new ThingworxStorage directory will
be generated once the Platform is restarted. You can then restore your old state by
renaming the directory to “ThingworxStorage”.

54 Extension Development Guide

Note
If you do not back up your storage, make sure that any entities you create on
Composer are exported into xml format because they will be deleted with the
storage directory.

Logging
When you are trying to figure out what is happening on the Platform, use logging.
Use ThingWorx LogUtilities to get a specific logger. There are multiple
kinds of loggers and log levels used in the ThingWorx Platform, but we
recommend that you use the application or script loggers for logging anything
from inside extension services.
For example:
protected static Logger logger =

LogUtilities.getInstance().getApplicationLogger(myThing.class);

logger.info("This is an information message");

logger.error("This is an error message");

Best Practices 55

6
Troubleshooting and Debugging

ThingTemplate Does Not Exist After Successful Import ..58
Jar Conflict on Import...58
Updated Extension Retains Old Version’s Functionality ..58
Failed to Create Data Shape ..58
Thing Does Not Run After Create or Save ...58
Debugging an Issue When Importing ..58
Connecting a Debug Port to Tomcat..59

57

ThingTemplate Does Not Exist After
Successful Import
This can happen when there is an issue creating the ThingTemplate once it has
been imported, but it is not a fatal exception. The most common cause of this is a
missing jar that is required for the ThingTemplate class. If this happens, check
your metadata.xml file for the jar declaration of a required jar. Then make
sure the jar is present in the extensions lib/common directory.

Jar Conflict on Import
This can occur when a jar you are attempting to use is already loaded on
ThingWorx Platform. Usually you can remove the jar from your metadata.xml
file to fix the problem. However, this can be risky because different versions of
the same jar can cause conflicts in functionality. This could affect your extension
or the Platform itself. The best solution is to try to avoid using this jar, if possible.

Updated Extension Retains Old Version’s
Functionality
The cause of this problem is the loaded classes from the previous version. This
can be fixed by restarting Tomcat.

Failed to Create Data Shape
This will happen if there is an incorrect declaration in a Java annotation. For
example, you define a property as BOOL or Boolean instead of BOOLEAN.
Make sure you are using the proper string constants in a declaration and note that
all base type values are case-sensitive.

Thing Does Not Run After Create or Save
This usually means that a thing was created or saved based on a thing template
that has an error in its initialization method. Make sure you are catching
exceptions and logging them so you can deduce the reason for the initialization
failure.

Debugging an Issue When Importing
When importing an extension, classes are loaded from provided jars, entities are
created, and multiple background processes execute at the same time. Sometimes
this can cause unexpected errors on import. Whenever an import fails, or succeeds

58 Extension Development Guide

but is missing something, it is usually best to check the Platform’s Application
Log. In the vast majority of cases, you will find an error explaining what went
wrong with your import. To get to this, and other logs, use the Monitor button at
the top right of Composer.

Connecting a Debug Port to Tomcat
The most useful way of debugging involves connecting a debug port to your
Tomcat instance. This allows you to connect to the Platform from inside an IDE
and add breakpoints to the code you have uploaded. This will let you trigger a
service, set a property, or save a thing and track what happens inside your code as
it executes. It is important to note that the code you uploaded must be exactly the
same as the code in which you have breakpoints. If it is not, then the breakpoints
you add will be associated with different lines of code and may have different
values and functionality than you would expect.
To add a debug port to Tomcat, you must add a Java option on startup. There are
multiple ways to do this and it will depend on how you are launching Tomcat.
Since there are many ways to properly configure this, it is recommended that you
research your particular Tomcat and IDE setup.
See Example Using Tomcat Monitor GUI and Eclipse.

Troubleshooting and Debugging 59

7
Appendix A: Examples

Platform Integration Example using Twitter..62
Example using Tomcat Monitor GUI and Eclipse ..62
HelloWorldThing ...64
GoodByeThing..66
Common Code Snippets ..68

61

Platform Integration Example using
Twitter
A common reason for creating an extension is to create a connection between
ThingWorx and external platforms through APIs and database connectors. This is
commonly done by creating a connector between ThingWorx and a web resource.
In the following example we will show how this is done in the Twitter Extension.
The bulk of the work done by the Twitter extension is through the TwitterThing
thing template, which is used as a connector. In TwitterThing, there are various
configuration values and services that allow the ThingWorx Platform to connect to
Twitter.
The configuration table includes four values that need to be set in order for the
extension to work: consumerSecret, consumerKey, accessToken, and
accessTokenSecret. The configuration values are consumed by the service calls to
connect to the proper host and add authentication.

By using these configuration values and a predefined API, the Twitter extension
exposes ThingWorx Services that interface with Twitter directly. This architecture
results in a single template, or a set of Things extending this template, that expose
API functionality to entities and services within ThingWorx Platform.

Example using Tomcat Monitor GUI and
Eclipse
1. Set up Tomcat to start in debug mode and open a port. When using the Tomcat

Monitor GUI, this can be done in the Java Options section of the Java tab

62 Extension Development Guide

http://marketplace.thingworx.com/downloads/twitter/

when editing Properties (shown below). The line you want to enter in Java
Options is as follows:
-agentlib:jdwp=transport=dt_socket,address=1043,server=y,suspend=n

Enter any available port value for address (do not use well-known ports that
might be used by other processes), and note this value for the next step.

2. Set up a remote debug connection in your IDE. This should be done
differently depending on the IDE you are using.

If you are using Eclipse:

a. Go to Run ▶▶ Debug Configurations.
b. Select Remote Java Applications and create a new configuration (right click

▶▶ New).
c. In the Project field, browse for and select your project.
d. In the Host field, enter the host of your Tomcat instance.
e. In the Port field, enter the debug port to which you intend to connect (this

should match the port/address you entered in step 1).
f. Run debug after Tomcat has started in debug mode, and you will be

connected.

Appendix A: Examples 63

HelloWorldThing
package com.helloinc.things.helloworld;

import org.slf4j.Logger;

import com.thingworx.data.util.InfoTableInstanceFactory;
import com.thingworx.logging.LogUtilities;
import com.thingworx.metadata.annotations.ThingworxEventDefinition;
import com.thingworx.metadata.annotations.ThingworxEventDefinitions;
import com.thingworx.metadata.annotations.ThingworxPropertyDefinition;
import com.thingworx.metadata.annotations.ThingworxPropertyDefinitions;
import com.thingworx.metadata.annotations.ThingworxServiceDefinition;
import com.thingworx.metadata.annotations.ThingworxServiceParameter;
import com.thingworx.metadata.annotations.ThingworxServiceResult;
import com.thingworx.things.Thing;
import com.thingworx.things.events.ThingworxEvent;
import com.thingworx.types.InfoTable;
import com.thingworx.types.collections.ValueCollection;
import com.thingworx.types.primitives.NumberPrimitive;
import com.thingworx.types.primitives.StringPrimitive;
import com.thingworx.webservices.context.ThreadLocalContext;

@ThingworxPropertyDefinitions(
properties = {

@ThingworxPropertyDefinition(name = "StringProperty1",
description = "Sample string property",
baseType = "STRING",
aspects = { "isPersistent:false", "isReadOnly:false" }),

@ThingworxPropertyDefinition(name = "NumberProperty1",
description = "Sample number property",
baseType = "NUMBER",
aspects = { "isPersistent:false", "isReadOnly:false" }) })

@ThingworxEventDefinitions(
events = {

@ThingworxEventDefinition(name = "SalutationSent",
description = "Salutation sent event",
dataShape = "SalutationSentEvent") })

public class HelloWorldThing extends Thing {

protected static Logger _logger =
LogUtilities.getInstance().getApplicationLogger(HelloWorldThing.class);

// local property values
private String _stringProperty1 = "";
private Double _numberProperty1 = 0.0;

protected void initializeThing() throws Exception {

64 Extension Development Guide

_stringProperty1 = ((StringPrimitive)
this.getPropertyValue("StringProperty1")).getValue();

_numberProperty1 = ((NumberPrimitive)
this.getPropertyValue("NumberProperty1")).getValue();

}

@ThingworxServiceDefinition(name = "SayHello", description = "Hello world")
@ThingworxServiceResult(name = "Result",

description = "Result", baseType = "STRING")
public String SayHello() throws Exception {

return "Hello world.";
}

@ThingworxServiceDefinition(name = "Greeting", description = "Hello world")
@ThingworxServiceResult(name = "Result",

description = "Result", baseType = "STRING")
public String Greeting(@ThingworxServiceParameter(name = "userToGreet",

description = "The user you're greeting",
baseType = "USERNAME") String userToGreet)throws Exception {

fireSalutationSentEvent(userToGreet);
return "Hello " + userToGreet + ". How are you?";

}

// Event Firing Example
private void fireSalutationSentEvent(String userName) throws Exception {

ThingworxEvent event = new ThingworxEvent();
event.setTraceActive(ThreadLocalContext.isTraceActive());
event.setSecurityContext(ThreadLocalContext.getSecurityContext());
event.setSource(getName());
event.setEventName("SalutationSent");

// the name parameter isn't really used
InfoTable data =

InfoTableInstanceFactory.createInfoTableFromDataShape("SalutationSentEvent");

ValueCollection values = new ValueCollection();
values.put("userGreeted", new StringPrimitive(userName));

data.addRow(values);

event.setEventData(data);

this.dispatchBackgroundEvent(event);
}

}

Appendix A: Examples 65

GoodByeThing
package com.helloinc.things.goodbye;

import org.slf4j.Logger;

import com.thingworx.entities.utils.EntityUtilities;

import com.thingworx.entities.utils.ThingUtilities;

import com.thingworx.logging.LogUtilities;

import com.thingworx.metadata.annotations.ThingworxConfigurationTableDefinition;

import com.thingworx.metadata.annotations.ThingworxConfigurationTableDefinitions;

import com.thingworx.metadata.annotations.ThingworxDataShapeDefinition;

import com.thingworx.metadata.annotations.ThingworxFieldDefinition;

import com.thingworx.metadata.annotations.ThingworxServiceDefinition;

import com.thingworx.metadata.annotations.ThingworxServiceParameter;

import com.thingworx.metadata.annotations.ThingworxServiceResult;

import com.thingworx.relationships.RelationshipTypes.ThingworxRelationshipTypes;

import com.thingworx.resources.entities.EntityServices;

import com.thingworx.things.Thing;

import com.thingworx.types.ConfigurationTable;

import com.thingworx.types.InfoTable;

import com.thingworx.types.collections.ValueCollection;

import com.thingworx.types.primitives.NumberPrimitive;

@ThingworxConfigurationTableDefinitions(tables = {

@ThingworxConfigurationTableDefinition(name="ConfigTableExample1",

description="Example 1 config table", isMultiRow=false,

dataShape = @ThingworxDataShapeDefinition(

fields = {

@ThingworxFieldDefinition(name="field1",description="",baseType="STRING"),

@ThingworxFieldDefinition(name="field2",description="",baseType="NUMBER"),

@ThingworxFieldDefinition(name="field3",description="",baseType="BOOLEAN"),

@ThingworxFieldDefinition(name="field4",description="",baseType="USERNAME")})),

@ThingworxConfigurationTableDefinition(name="ConfigTableExample2",

description="Example 2 config table", isMultiRow=true,

dataShape = @ThingworxDataShapeDefinition(

fields = {

@ThingworxFieldDefinition(name="columnA",description="",baseType="STRING"),

@ThingworxFieldDefinition(name="columnB",description="",baseType="NUMBER"),

@ThingworxFieldDefinition(name="columnC",description="",baseType="BOOLEAN"),

@ThingworxFieldDefinition(name="columnD",description="",baseType="USERNAME") })) })

public class GoodByeThing extends Thing {

protected static Logger _logger =

66 Extension Development Guide

LogUtilities.getInstance().getApplicationLogger(GoodByeThing.class);

@Override

public void initializeThing() throws Exception {

super.initializeThing();

_logger.warn("****** Initializing GoodByeThingInstance " + getName());

// Examples of getting the configuration table values

String field1Value = (String)getConfigurationSetting("ConfigTableExample1", "field1");

Double field2Value = (Double)getConfigurationSetting("ConfigTableExample1", "field2");

Boolean field3Value = (Boolean)getConfigurationSetting("ConfigTableExample1", "field3");

String field4Value = (String)getConfigurationSetting("ConfigTableExample1", "field4");

// Example of setting a configuration table value

setConfigurationSetting("ConfigTableExample1", "field2", (field2Value + 2.1));

SaveConfigurationTables();

// Another example

setConfigurationSetting("ConfigTableExample1", "field2",

((Double)getConfigurationSetting("ConfigTableExample1", "field2") + 5.5));

SaveConfigurationTables();

// Example of getting multi-row configuration table data

ConfigurationTable tableTwo = getConfigurationTable("ConfigTableExample2");

_logger.warn("****** Iterating " + tableTwo.getName() + " of goodbye thing instance " +

getName());

_logger.warn("****** " + tableTwo.getName() + " has " + tableTwo.getLength() + " rows");

int counter = 0;

for(ValueCollection row : tableTwo.getRows()) {

String columnA = row.getStringValue("columnA");

Double columnB = (Double)row.getValue("columnB");

Boolean columnC = (Boolean)row.getValue("columnC");

String columnD = row.getStringValue("columnD");

_logger.warn("columnA row " + counter++ + " value is " + columnA);

_logger.warn("columnB row " + counter++ + " value is " + columnB);

_logger.warn("columnC row " + counter++ + " value is " + columnC);

_logger.warn("columnD row " + counter++ + " value is " + columnD);

}

}

// Property set of another Thing

@ThingworxServiceDefinition(name="SetHelloWorldProperty",

Appendix A: Examples 67

description="Set a property on Hello world")

public void SetHelloWorldProperty(

@ThingworxServiceParameter(name="thingToSet", description="The thing you're setting",

baseType="THINGNAME", aspects={"thingTemplate:HelloWorld"}) String thingToSet,

@ThingworxServiceParameter(name="numberPropertyToSet", description=

"The property name you're setting", baseType="STRING") String numberPropertyToSet,

@ThingworxServiceParameter(name="numberValueToSet", description=

"The propert value you're setting", baseType="NUMBER") Double numberValueToSet) throws Exception {

Thing helloThing = ThingUtilities.findThing(thingToSet);

helloThing.setPropertyValue(numberPropertyToSet, new NumberPrimitive(numberValueToSet));

}

// Access a Resource

@ThingworxServiceDefinition(name="AccessAResource",

description="Execute a service of a resource")

@ThingworxServiceResult(name="result", description=

"Matching entries", baseType="INFOTABLE", aspects={"dataShape:RootEntityList"})

public InfoTable AccessAResource() throws Exception {

// Easiest way to do this as well as access any service of a Thing

// is simply to call what you see in Composer.

EntityServices entityService = (EntityServices)

EntityUtilities.findEntity("EntityServices",

ThingworxRelationshipTypes.Resource);

return entityService.GetEntityList("Thing", "", null, null);

}

}

Common Code Snippets

Getting Property and Configuration Values
Using local variables to keep track of properties and configuration values can be
convenient, but it can also lead to incorrect values being used in various
situations. This can be a tough problem to track down. Therefore, it is
recommended that when you reference a thing’s property or configuration value,
you get the current value each time. This avoids problems with external sources
setting values, but not having those values update in your Java code. Here are
some examples of the correct ways to access a thing’s property and configuration
values from within the thing’s class.

68 Extension Development Guide

To access a thing’s property:
StringPrimitive stringProperty1 =

(StringPrimitive)this.getPropertyValue("StringProperty1");

or
String stringProperty1 =
((StringPrimitive)this.getPropertyValue("StringProperty1")).getValue();

To access a thing’s configuration:
String field1Value =

getStringConfigurationSetting("ConfigTableExample1", "field1");

Setting Property and Configuration Values
Setting property and configuration values is similar to getting properties. The
biggest difference between the two is that configuration values need to be saved
once they are set.
Example of setting a property value:
this.setPropertyValue(numberPropertyToSet,

new NumberPrimitive(numberValueToSet));

Example of setting a configuration table value:
this.setConfigurationSetting("ConfigTableExample1", "field2", (field2Value + 2.1));

SaveConfigurationTables();

Another example of setting a configuration table value:
this.setConfigurationSetting("ConfigTableExample1", "field2",
((Double)getConfigurationSetting("ConfigTableExample1", "field2")
+ 5.5));
SaveConfigurationTables();

File Management
The file system for ThingWorx does not have a guaranteed static path that can be
referenced. For this purpose, there is a FileRepositoryThing template that is used
to store and access files. The File Repository thing has services, such as
openFileForWrite() and openFileForRead(), that allow you to access files that are
stored in unique locations based on the file repository thing you are using.
Similarly, if you need to upload a file with an extension, then it should be done
through a jar on the classpath, since the location of an uploaded file may not be
known. Here is an example using the file repository thing and a file pulled from
the classpath:
public String exportResource(String resourceName,

FileRepositoryThing repo) throws Exception {

Appendix A: Examples 69

InputStream stream = null;

OutputStream resStreamOut = null;

String jarFolder;

try {

stream = this.getClass().getClassLoader().

getResourceAsStream(resourceName);

if(stream == null) {

throw new Exception("Cannot get resource \"" +

resourceName + "\" from Jar file.");

}

int readBytes;

byte[] buffer = new byte[4096];

resStreamOut = repo.openFileForWrite(resourceName,

FileRepositoryThing.FileMode.WRITE);

while ((readBytes = stream.read(buffer)) > 0) {

resStreamOut.write(buffer, 0, readBytes);

}

} catch (Exception ex) {

throw ex;

} finally {

if(stream != null) {

stream.close();

}

if(resStreamOut != null) {

resStreamOut.close();

}

}

return resourceName;

}

Sending HTTP Messages
While there are many convenient HTTP builders and clients to use, it is
recommended that you avoid using them for the same reason we have our Golden
Rule. Fortunately, this functionality is common and is already built into the
Platform through the form of the ContentLoader. The Content loader takes many
parameters in order to send an HTTP message, but many are often set to null
because they are not needed. Here is a simple example of using the content loader
to send an HTTP Post and get the response. In this case we are constructing a
SOAP request.

public String sendSoapMessage(String host, String path, String soapAction,
String content) throws Exception{

70 Extension Development Guide

ContentLoader loader = new ContentLoader();
JSONObject headers = new JSONObject();
headers.put("SOAPAction",soapAction);

String result = "undefined";
try{

String url = "https://" + host + path;
result = loader.PostText(url,content,"text/xml",null,
null,headers,false,false,30000.0,null,null,null,
false,null,null,null);
String fault = checkForFaultCode(result);
if (fault != "") {
return fault;
}

} catch(SSLHandshakeException e){
logger.error("Unexpected Error while sending request,
possible incorrect hostname?: " + e.getMessage());
return "Unexpected exception while sending message.
Possible valid but incorrect host?";

} catch(Exception e){
logger.error("Unexpected Error while sending request: " +
e.getMessage());

throw e;
}

return result;
}

Appendix A: Examples 71

8
Appendix B: Widget

Implementation Guide
Referencing Third-Party JavaScript Libraries and Files ..74

This appendix details how the ThingWorx Mashup Builder and runtime interact
with widgets, the functions that widgets can implement, and the APIs that they
can call.

73

Referencing Third-Party JavaScript
Libraries and Files
Third-party libraries, images, and other web artifacts needed by the widget should
be placed in the /ui/<widgetname> folder or subfolders of that location. The *.ide.
js and *.runtime.js files can then reference any of those artifacts via that relative
path of:
../Common/extensions/<extensionname>/ui/<widgetname>/
For example, to include a third-party JavaScript library and CSS into your widget
code, one can do the following:
if (!jQuery().qtip) {
$("body").append('<script type="text/javascript"
src="../Common/extensions/MyExtension/ui/mywidget/
include/qtip/jquery.qtip.js"></script>');

$("head").append('<link type="text/css"
rel="stylesheet" href="
../Common/extensions/MyExtension/ui/mywidget/include/
qtip/jquery.qtip.css" />');

}

Widget Example

Mashup Builder Code
The <widgetname>.ide.js file must implement several functions to work
correctly in the Mashup Builder (see Widget API: Mashup Builder). Widgets can
declare widget properties, services, and events in functions.
Below is sample code for a widget namedMyWidget with a bindable string
property named DisplayText.
TW.IDE.Widgets.mywidget = function () {
this.widgetIconUrl = function() {
return "../Common/extensions/MyExtension/ui/" +
"mywidget/mywidget.ide.png";

};

this.widgetProperties = function () {
return {
name : "My Widget",
description : "An example widget.",
category : ["Common"],
properties : {
DisplayText: {
baseType: "STRING",
defaultValue: "Hello, World!",
isBindingTarget: true

}

74 Extension Development Guide

}
}
};

this.renderHtml = function () {
var mytext = this.getProperty('MyWidget Property');
var config = {
text: mytext

}

var widgetTemplate = _.template(
'<div class="widget-content widget-mywidget">' +
'<%- text %>' +
'</div>'

);
return widgetTemplate(config);
};
this.afterSetProperty = function (name, value) {
return true;
};

};

Runtime Code
To handle the widget at runtime, you need methods to do the following:

• Render the HTML at runtime
• Set up bindings after rendering the HTML
• Handle property updates
Below is sample code of what the <widgetname>.runtime.js may look
like.
TW.Runtime.Widgets.mywidget = function () {
var valueElem;
this.renderHtml = function () {
var mytext = this.getProperty('MyWidget Property');
var config = {
text: mytext

}
var widgetTemplate = _.template(
'<div class="widget-content widget-mywidget">' +
'<%- text %>' +
'</div>'

);
return widgetTemplate(config);
};
this.afterRender = function () {
valueElem = this.jqElement.find(".DisplayText");
valueElem.text(this.getProperty("DisplayText"));

Appendix B: Widget Implementation Guide 75

};
this.updateProperty = function (updatePropertyInfo) {
if (updatePropertyInfo.TargetProperty === "DisplayText") {
valueElem.text(updatePropertyInfo.SinglePropertyValue);
this.setProperty("DisplayText",
updatePropertyInfo.SinglePropertyValue);

}
};
};

Additional Features
You can incorporate the following features into your widgets:

• Services that can be bound to events (such as Click of a Button, Selected Rows
Changed, or Service Completed)

• Events that can be bound to various services (for example, invoke a service
and navigate to a mashup)

• Properties can be bound out
You can access the full power of JavaScript and HTML in your widget code at
runtime. Anything that can be done using HTML and JavaScript is available
within your widget.

Widget API: Mashup Builder

Widget Lifecycle in the Mashup Builder
Awidget has the following lifecycle within the Mashup Builder. During each
lifecycle state, the specified functions on the widget are called by the Mashup
Builder.

• Discovered

The widget is being loaded into index.html and added to the widget toolbar/
palette.

○ widgetProperties()

Called to get information about each widget (such as display name and
description)

○ widgetEvents()

Called to get information about the events each widget exposes
○ widgetServices()

Called to get information about the services each widget exposes
• Created

76 Extension Development Guide

The widget is dragged onto a mashup panel.

○ afterload()

Called after your object is loaded and properties have been restored from
the file but before your object has been rendered

• Appended

The widget is appended to the workspace DOM element.

○ renderHtml()

Called to get an HTML fragment that will be inserted into the mashup
DOM element

○ afterRender()

Called after the HTML fragment representing the widget has been inserted
into the mashup DOM element and a usable element ID has been assigned
to the DOM element holding the widget content. The DOM element is
then ready to be manipulated.

• Updated

The widget is resized or updated in the widget property window.

○ beforeSetProperty()

Called before any property is updated
○ afterSetProperty()

Called after any property is updated
• Destroyed

The widget is deleted from the mashup.

○ beforeDestroy()

Called right before the widget’s DOM element is removed and the widget
is detached from its parent widget and deallocated. You should clean up
resources (such as plugins and event handlers) acquired during the lifetime
of the widget.

Mashup Builder APIs Available to the Widget
The following APIs can be accessed by a widget in the context of the Mashup
Builder:
• this.jqElementId

This is the DOM element ID of your object after renderHtml().
• this.jqElement

Appendix B: Widget Implementation Guide 77

This is the jquery element.
• this.getProperty(name)
• this.setProperty(name,value)

Note that every call to this function will call afterSetProperty() if it’s defined
in the widget.

• this.updatedProperties()

This function should be called anytime properties are changed in the widget so
that the Mashup Builder can update the widget properties window, the
connections window, and so on.

• this.getInfotableMetadataForProperty(propertyName)

If you need the infotable metadata for a property that you bound, you can get it
by calling this API; it returns undefined if it is not bound.

• this.resetPropertyToDefaultValue(propertyName)

This call resets the named property to its default value.
• this.removeBindingsFromPropertyAsTarget(propertyName)

This call removes target data bindings from the propertyName. Use it only
when the user has initiated an action that invalidates the property.

• this.removeBindingsFromPropertyAsSource(propertyName)

This call removes source data bindings from the propertyName. Use this only
when the user has initiated an action that invalidates the property.

• this.isPropertyBoundAsTarget(propertyName)

This call returns a result that indicates if the property has been bound as a
target. You can use it to determine if a property has been set or bound. For
example, the blog widgets validate() function is:

this.validate = function () {

var result = [];

var blogNameConfigured = this.getProperty('Blog');

if (blogNameConfigured === '' ||

blogNameConfigured === undefined) {

if (!this.isPropertyBoundAsTarget('Blog')) {

result.push({ severity: 'warning',

message: 'Blog is not bound for {target-id}' });

}

}

return result;

78 Extension Development Guide

}

• this.isPropertyBoundAsSource(propertyName)

This call returns a result that indicates if the property has been bound as a
source. You can use it to determine if a property has been bound to a target.
For example, the checkbox widget’s validate() function:
this.validate = function () {
var result = [];

if (!this.isPropertyBoundAsSource('State') &&
!this.isPropertyBoundAsTarget('State')) {

result.push({ severity: 'warning',
message: 'State for {target-id} is not bound' });

}

return result;
}

Callbacks from Mashup Builder to Your Widget
The following functions on the widget are called by the Mashup Builder to control
the widget’s behavior.

• widgetProperties() - [required]

Returns a JSON structure that defines the properties of the widget.

Required properties are:

○ name

The user-friendly widget name, as shown in the widget toolbar

Optional properties are:

○ description - A description of the widget, which is used for its tooltip.
○ iconImage - File name of the widget icon/image
○ category - An array of strings for specifying one or more categories to

which the widget belongs (such as “Common”, “Charts”, “Data”,
“Containers”, and “Components”). This enables the user to filter widgets
by type/category.

○ isResizable - true (default) or false
○ defaultBindingTargetProperty - Name of the property to use as the data/

event binding target
○ borderWidth - If your widget has a border, set this property to the width of

the border. This property helps to ensure pixel-perfect WYSIWG between

Appendix B: Widget Implementation Guide 79

builder and runtime.If you set a border of one pixel on the widget-content
element at design time, you are making the widget two pixels taller and
two pixels wider (one pixel on each side). To account for this discrepancy,
set the borderWidth property to make the design-time widget the same
number of pixels smaller. This property places the border inside the widget
that you created and makes the width and height in the widget properties
accurate.

○ isContainer - true or false (default). Controls whether an instance of this
widget can be a container for other widget instances.

○ customEditor – the name of the custom editor dialog to use for entering
and editing the widget configuration. The system assumes there is a dialog
named you created TW.IDE.Dialogs.<name>.

○ customEditorMenuText - The text that appears on the flyout menu of the
widget and the hover over text for the Configure Widget Properties button.
For example, “Configure Grid Columns.”

○ allowPositioning - true (default) or false
○ supportsLabel - true or false (default). If true, the widget exposes a Label

property whose value is used to create a text label that appears next to the
widget in the Composer and at runtime.

○ supportsAutoResize - true or false (default). If true, the widget can be
placed in responsive containers (such as columns, rows, responsive tabs,
responsive mashups).

○ properties - A collection of JSON objects for the widget that describe the
properties of the widget that can be modified when the widget is added to a
mashup. These properties are displayed in the properties window of the
Mashup Builder, with the name of each object used as the property name,
and the corresponding attributes controlling how the property value is set.

For example:
properties: {
Prompt: {

defaultValue: 'Search for...',
baseType: STRING,
isLocalizable: true

},
Width: {

defaultValue: 120
},
Height: {

defaultValue: 20,
isEditable: false

},
}

80 Extension Development Guide

The following attributes can be specified for each property object:

○ description - A description of the widget, which is used for its tooltip.
○ baseType - The system base type name. If the baseType value is

‘FIELDNAME’, the widget property window displays a dropdown list of
fields available in the INFOTABLE bound to the sourcePropertyName
value based on the baseTypeRestriction. Other special baseTypes:

◆ STATEDEFINITION - Picks a StateDefinition
◆ STYLEDEFINITION - Picks a StyleDefinition
◆ RENDERERWITHSTATE - Displays a dialog and allows you to select

a renderer and formatting. Note: You can set a default style by entering
the string with the default style name in the defaultValue. When your
binding changes, you should reset it to the default value as in the code
below:

this.afterAddBindingSource = function (bindingInfo) {
if(bindingInfo['targetProperty'] === 'Data') {
this.resetPropertyToDefaultValue('ValueFormat');

}
};

◆ STATEFORMATTING - Displays a dialog and allows you to pick a
fixed style or state-based style. Note: You can set a default style by
entering the string with the default style name in the defaultValue.
When your binding changes, you should reset it to the default value as
shown in the code above for RENDERERWITHSTATE.

◆ VOCABULARYNAME will just pick a DataTags vocabulary at the
moment

○ mustImplement - if the baseType is THINGNAME, and you specify
“mustImplement”, the Mashup Builder will restrict to popups
implementing the specified EntityType and EntityName [by calling
QueryImplementingThings against said EntityType and EntityName].

For example:
'baseType': 'THINGNAME',
'mustImplement': {
'EntityType': 'ThingShapes',
'EntityName': 'Blog'
}

○ baseTypeInfotableProperty - if baseType is RENDERERWITHFORMAT,
baseTypeInfotableProperty specifies which property’s infotable is used for
configuration

Appendix B: Widget Implementation Guide 81

○ sourcePropertyName - when the property’s baseType is ‘FIELDNAME’,
this attribute is used to determine which INFOTABLE’s fields are to be
used to populate the FIELDNAME dropdown list.

○ baseTypeRestriction - when specified, this value is used to restrict the
fields available in the FIELDNAME dropdown list.

○ tagType - if the baseType is ‘TAGS’ this can be ‘DataTags’ (default) or
‘ModelTags’.

○ defaultValue - default undefined; used only for ‘property’ type
○ isBindingSource - true or false; allows the property to be a data binding

source, default to false
○ isBindingTarget - true or false; allows the property to be a data binding

target, default to false
○ isEditable - true or false; controls whether the property can be edited in the

Composer, default to true
○ isVisible - true or false; controls whether the property is visible in the

properties window, default to true
○ isLocalizable - true or false; only important if baseType is ‘STRING’ -

controls whether the property can be localized or not.
○ selectOptions - an array of value / (display) text structures

For example:
[{value: ‘optionValue1’, text: ‘optionText1’},
{value: ‘optionValue2’, text: ‘optionText2’}]

○ warnIfNotBoundAsSource - true or false; if true, then the property will be
checked by the Composer for whether it’s bound and generate a to-do item
when it’s not

○ warnIfNotBoundAsTarget - true or false; if true, then the property will be
checked by the Composer for whether it’s bound and generate a to-do item
when it’s not

• afterLoad() [optional] - called after your object is loaded and properties have
been restored from the file, but before your object has been rendered

• renderHtml() [required] - returns HTML fragment that the Composer will
place in the screen; the widget’s content container (e.g. div) must have a
‘widget-content’ class specified, after this container element is appended to
the DOM, it becomes accessible via jqElement and its DOM element id will
be available in jqElementId

• widgetEvents() [optional] - a collection of events; each event can have the
following properties:

82 Extension Development Guide

• warnIfNotBound - true or false; if true, then the property will be checked by
the Composer for whether it’s bound and generate a to-do item when it’s not

• widgetServices() [optional] - a collection of services; each service can have
the following properties:

• warnIfNotBound - true or false; if true, then the property will be checked by
the Composer for whether it’s bound and generate a to-do item when it’s not

• afterRender() [optional] - called after we insert your html fragment into the
dom

• beforeDestroy() [optional] - called right before the widget’s DOM element
gets removed and the widget is detached from its parent widget and
dellocated; this is the place to perform any clean-up of resources (e.g. plugins,
event handlers) acquired throughout the lifetime of the widget

• beforeSetProperty(name,value) [optional] [Mashup Builder only - not at
runtime] - called before any property is updated within the Composer, this is a
good place to perform any validation on the new property value before it is
committed. If a message string is returned, then the message will be displayed
to the user, and the new property value will not be committed. If nothing is
returned, then the value is assumed valid.

• afterSetProperty(name,value) [optional] [Mashup Builder only - not at
runtime] - called after any property is updated within the Composer. Return
true to have the widget re-rendered in the Composer

• afterAddBindingSource(bindingInfo) [optional] - whenever data is bound to
your widget, you will called back with this (if you implement it … it’s
optional). The only field in bindingInfo is targetProperty which is the
propertyName that was just bound

• validate() [optional] - called when the Composer refreshes its to-do list. The
call must return an array of result object with severity (optional and not
implemented) and message (required) properties. The message text may
contain one or more pre-defined tokens, such as {target-id}, which will get
replaced with a hyperlink that allows the user to navigate/select the specific
widget that generated the message. For example:
this.validate = function () {
var result = [];
var srcUrl = this.getProperty('SourceURL');
if (srcUrl === '' || srcUrl === undefined) {
result.push({ severity: 'warning',
message: 'SourceURL is not defined for {target-id}'});

}
return result;
}

Appendix B: Widget Implementation Guide 83

Widget API: Runtime

Widget Lifecycle in Runtime
• When a widget is first created, the runtime will obtain any declared properties

by calling the runtimeProperties() function. See Callbacks from Runtime to
Your Widget for more information.

• The property values that were saved in the mashup definition will be loaded
into your object without your code being called in any way.

• After your widget is loaded but before it’s put on to the screen, the runtime
will call renderHtml() where you return the HTML for your object. The
runtime will render that HTML into the appropriate place in the DOM

• Immediately after that HTML is added to the DOM, you will be called with
afterRender(). This is the time to do the various jQuery bindings (if you need
any). It is only at this point that you can reference the actual DOM elements
and you should only do this using code such as:
// note that this is a jQuery object
var widgetElement = this.domElement;

This is important because the runtime actually changes your DOM element ID
and you should never rely on any id other than the id returned from this.
domElementId)

• If you have defined an event that can be bound, whenever that event happens
you should call the following:
var widgetElement = this.domElement;
// change ‘Clicked’ to be whatever your event name is that
// you defined in your runtimeProperties that people bind to
widgetElement.triggerHandler('Clicked');

• If you have any properties bound as data targets, you will be called with
updateProperty(). You are expected to update the DOM directly if the changed
property affects the DOM - which is likely, otherwise why would the data be
bound

• If you have properties that are defined as data sources and they’re bound you
can be called with getProperty_{propertyName}() … if you don’t define this
function, the runtime will simply get the value from the property bag.

Runtime APIs Available to Widgets
The following APIs can be accessed by a widget in the context of the runtime:

• this.jqElementId

This is the DOM element ID of your object after renderHtml().
• this.jqElement

84 Extension Development Guide

This is the jquery element
• this.getProperty(name)
• this.setProperty(name,value)
• this.updateSelection(propertyName,selectedRowIndices)

Call this anytime your widget changes selected rows on data bound to a
certain propertyName. For example, in a callback you have for an event like
onSelectStateChanged(), you’d call this API and the system will update any
other widgets relying on selected rows.

Callbacks from Runtime to Your Widget
The following functions on the widget are called by the runtime.

• runtimeProperties() - [optional] Returns a JSON structure defining the
properties of this widget

Optional properties are:

○ isContainer - true or false (default to false); controls whether an instance of
this widget can be a container for other widget instances

○ needsDataLoadingAndError - true or false (defaults to false) - set to true if
you want your widget to display the standard 25% opacity when no data
has been received and turn red when there is an error retrieving data

○ borderWidth - if your widget provides a border, set this to the width of the
border. This helps ensure pixel-perfect WYSIWG between builder and
runtime

○ supportsAutoResize- if your widget supports auto-resize, set this to true
○ propertyAttributes – if you have STRING properties that are localizable,

please list them here. For example, if TooltipLabel1 is localizable:
this.runtimeProperties = function () {
return {
'needsDataLoadingAndError': true,
'propertyAttributes': {
'TooltipLabel1': {'isLocalizable': true} }
}

};

• renderHtml() [required] - returns HTML fragment that the runtime will place
in the screen; the widget’s content container (e.g. div) must have a ‘widget-
content’ class specified, after this container element is appended to the DOM,
it becomes accessible via jqElement and its DOM element id will be available
in jqElementId

Appendix B: Widget Implementation Guide 85

• afterRender() [optional] - called after the widget html fragment is inserted into
the dom. Use this.domElementId to find the DOM element ID. Use this.
jqElement to use the jQuery reference to this dom element

• beforeDestroy() [optional but highly recommended] - this is called anytime the
widget is unloaded, this is the spot to...

○ unbind any bindings
○ clear any data set with .data()
○ destroy any third party libraries or plugins, call their destructors, etc.
○ free any memory you allocated or are holding on to in closures, by setting

the variables to null
○ there is no need to destroy the DOM elements inside the widget, they will

be destroyed for you by the runtime
• resize(width,height) [optional – only useful if you declare

supportsAutoResize: true] - this is called anytime your widget is resized. Some
widgets don’t need to handle this. For example, if the widget’s elements and
CSS auto-scale. But others (most widgets) need to actually do something
based on the widget changing size.

• handleSelectionUpdate(propertyName, selectedRows, selectedRowIndices) -
called whenever selectedRows has been modified by the data source you’re
bound to on that (PropertyName. selectedRows is an array of the actual data
and selectedRowIndices is an array of the indices of the selected rows.

Note
To get the full selectedRows event functionality without having to bind a
list or grid widget, this function must be defined.

• serviceInvoked(serviceName) - serviceInvoked() is called whenever a service
you defined is triggered.

• updateProperty(updatePropertyInfo) - updatePropertyInfo is an object with the
following JSON structure{
{
DataShape: metadata for the rows returned
ActualDataRows: actual Data Rows
SourceProperty: SourceProperty
TargetProperty: TargetProperty
RawSinglePropertyValue: value of SourceProperty

in the first row of ActualDataRows
SinglePropertyValue: value of SourceProperty

in the first row of ActualDataRows
converted to the defined baseType of the

86 Extension Development Guide

target property [not implemented yet],
SelectedRowIndices: an array of selected row indices
IsBoundToSelectedRows: a Boolean letting you know if this

is bound to SelectedRows
}

For each data binding, your widget’s updateProperty() will be called each time
the source data is changed. You need to check updatePropertyInfo.
TargetProperty to determine what aspect of your widget should be updated.
Here is an example from thingworx.widget.image.js:
this.updateProperty = function (updatePropertyInfo) {

// get the img inside our widget in the DOM
var widgetElement = this.jqElement.find('img');

// if we're bound to a field in selected rows
// and there are no selected rows, we'd overwrite the
// default value if we didn't check here
if (updatePropertyInfo.RawSinglePropertyValue !==

undefined) {

// see which TargetProperty is updated
if (updatePropertyInfo.TargetProperty === 'sourceurl') {

// SourceUrl updated - update the <img src=
this.setProperty('sourceurl',

updatePropertyInfo.SinglePropertyValue);
widgetElement.attr("src",

updatePropertyInfo.SinglePropertyValue);

} else if (updatePropertyInfo.TargetProperty ===
'alternatetext') {

// AlternateText updated - update the <img alt=
this.setProperty('alternatetext',
updatePropertyInfo.SinglePropertyValue);

widgetElement.attr("alt",
updatePropertyInfo.SinglePropertyValue);

}
}
};

Note that we set a local copy of the property in our widget object as well so
that if that property is bound as a data source for a parameter to a service call
(or any other binding) - the runtime system can simply get the property from
the property bag. Alternatively, we could supply a custom getProperty_
{propertyName} method and store the value some other way.

• getProperty_{propertyName}() - anytime that the runtime needs a property
value, it checks to see if your widget implements a function to override and

Appendix B: Widget Implementation Guide 87

get the value of that property. This is used when the runtime is pulling data
from your widget to populate parameters for a service call.

Tips
• Use this.jqElement to limit your element selections. This will reduce the

chance of introducing unwanted behaviors in the application when there might
be duplicate IDs and/or classes in the DOM.

○ Don’t do the following: $('.add-
btn').click(function(e){...do something...});

○ Do this:
this.jqElement.find('.add-btn').click(function(e){
...do something...});

• Logging - we recommend that you use the following methods to log in the
Mashup Builder and Runtime environment:

○ TW.log.trace(message[, message2, ...][, exception])

○ TW.log.debug(message[, message2, ...][, exception])

○ TW.log.info(message[, message2, ...][, exception])

○ TW.log.warn(message[, message2, ...][, exception])

○ TW.log.error(message[, message2, ...][, exception])

○ TW.log.fatal(message[, message2, ...][, exception])

You can view the log messages in the Mashup Builder by opening the log
window via the Help>Log menu item; in the Mashup runtime, you can now
click on the "Show Log" button on the top left corner of the page to show log
window. If the browser you use supports console.log(), then the messages will
also appear in the debugger console.

• Formatting - if you have a property with baseType of STYLEDEFINITION,
you can get the style information by calling
var formatResult = TW.getStyleFromStyleDefinition(
widgetProperties['PropertyName']);

If you have a property of baseType of STATEFORMATTING:
var formatResult = TW.getStyleFromStateFormatting({

DataRow: row,
StateFormatting: thisWidget.properties['PropertyName']

});

In both cases formatResult is an object with the following defaults:
{

image: '',
backgroundColor: '',
foregroundColor: '',

88 Extension Development Guide

fontEmphasisBold: false,
fontEmphasisItalic: false,
fontEmphasisUnderline: false,
displayString: '',
lineThickness: 1,
lineStyle: 'solid',
lineColor: '',
secondaryBackgroundColor: '',
textSize: 'normal'

};

Appendix B: Widget Implementation Guide 89

	About this Guide
	Prerequisites

	Introduction to Extensions
	What is an Extension?
	Why Build an Extension?

	Creating Extensions
	Extension Zip File Structure
	Metadata.xml File
	Defining the Extension
	Defining Thing Templates
	Defining Thing Shapes
	Defining Resources
	Defining Authenticators
	Defining Directory Services
	Defining Script Function Libraries
	Defining JAR Resources

	Entities Created in ThingWorx Composer
	Java-Based Entities
	ThingWorx Extension SDK
	API Compatibility
	Creating Thing Templates
	Creating Thing Shapes
	Creating Resources
	Creating Authenticators
	Creating Directory Services
	Creating Script Function Libraries
	Adding Services, Properties, and Other Methods to Entities
	The @ThingworxServiceDefinition Annotation
	The @ThingworxServiceResult Annotation
	The @ThingworxServiceParameters Annotation
	Properties
	Configuration Tables
	Events
	Subscriptions

	Extension Migrators
	Third-Party JAR Files
	Adding Custom Widgets
	Extension Import and Management
	Entity Characteristic Support

	Using the Eclipse Plugin
	Installing the Eclipse Plugin for ThingWorx Extension Development
	Creating an Extension Project
	Importing Existing Extensions
	Creating Entities
	Adding Services, Properties, Configuration Tables, Subscriptions, and Events
	Creating Widgets
	Adding Third-Party JAR Files
	Adding an Extension Migrator
	Importing Composer-Created Entities
	Building Extensions
	Deleting Entities and Widgets

	Best Practices
	Use the Eclipse Plugin
	The Golden Rule: Use as Few External jars as Possible
	Develop on a Clean Platform Instance
	Back Up Storage Before Delete
	Logging

	Troubleshooting and Debugging
	ThingTemplate Does Not Exist After Successful Import
	Jar Conflict on Import
	Updated Extension Retains Old Version’s Functionality
	Failed to Create Data Shape
	Thing Does Not Run After Create or Save
	Debugging an Issue When Importing
	Connecting a Debug Port to Tomcat

	Appendix A: Examples
	Platform Integration Example using Twitter
	Example using Tomcat Monitor GUI and Eclipse
	HelloWorldThing
	GoodByeThing
	Common Code Snippets
	Getting Property and Configuration Values
	Setting Property and Configuration Values
	File Management
	Sending HTTP Messages

	Appendix B: Widget Implementation Guide
	Referencing Third-Party JavaScript Libraries and Files
	Widget Example
	Mashup Builder Code
	Runtime Code
	Additional Features

	Widget API: Mashup Builder
	Widget Lifecycle in the Mashup Builder
	Mashup Builder APIs Available to the Widget
	Callbacks from Mashup Builder to Your Widget

	Widget API: Runtime
	Widget Lifecycle in Runtime
	Runtime APIs Available to Widgets
	Callbacks from Runtime to Your Widget

	Tips

