
Available online at www.sciencedirect.com

2212-8271 © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 26th CIRP Design Conference
doi: 10.1016/j.procir.2016.05.050

 Procedia CIRP 50 (2016) 512 – 517

ScienceDirect

26th CIRP Design Conference

Integration of digital factory with smart factory based on Internet of Things

 Navid Shariatzadeha,*, Thomas Lundholma, Lars Lindberga, Gunilla Sivarda
 aRoyal Institute of technology, Production Engineering, Brinellvägen 68, Stockholm 10044, Sweden

* Corresponding author. Tel.: +46-8-790-8338; fax: +46-8-790-8338. E-mail address: navid@kth.se

Abstract

Internet of things (IoT) in manufacturing can be defined as a future where every day physical objects in the shop floor, people
and systems (things) are connected by the Internet to build services critical to the manufacturing. Smart factory is a way towards
a factory-of-things, which is very much aligned with IoT. IoT not only deals with smart connections between physical objects but
also with the interaction with different IT tools used within the digital factory. Data and information come from heterogeneous IT
systems and from different domains, viewpoints, levels of granularity and life cycle phases causing potential inconsistencies in
the data sharing, preventing interoperability. Hence, our aim is to investigate approaches and principles when integrating the
digital factory, IT tools and IoT in manufacturing in a heterogeneous IT environment to ensure data consistency. In particular this
paper suggests an approach to identify what, when and how information should be integrated. Secondly it suggests integration
between IoT and PLM platforms using semantic web technologies and Open Services for Lifecycle Collaboration (OSLC)
standard on tool interoperability.

© 2016 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Professor Lihui Wang.

 Keywords: Digital factory; Internet of Things; Smart factory

1. Introduction

 Internet of things (IoT) is defined as the interconnection via
the Internet of computing devices embedded in everyday
objects, enabling them to send and receive data [1]. In Smart
factory products, resources and processes are characterized by
cyber-physical systems (CPS) [2]. CPS is analogous to the
Internet of Things (IoT) sharing the same architecture,
however, CPS presents a higher combination and coordination
between physical and computational components of
production systems [3]. The digital factory is a model of a
planned or real factory used for design, planning and
operations .In the smart factory, the digital factory developed
during engineering should be integrated with the smart factory
with its real time data and inferred statistics and information.
One significant capability is thus the integration of the digital
factory with the smart factory. This capability includes the
ability to create interfaces of digital things which are linked
with physical things. Further, functionalities needs to be
implemented for receiving data from the IT applications of the
digital factory to the IoT platform which implements the

smart factory, and providing feedback to the digital factory
through IoT services. However, in the IT environment, data
and physical resources are typically heterogeneous and a good
integration strategy is needed to assure the consistency of the
data which is pushed to or pulled from the IoT platform.
There is a need for a common language for presentation and
representation of data together with a protocol that enables
IoT devices to communicate to the digital factory. For
interoperability within a digital factory, many ontologies and
information standards such as ISO 10303 have been
developed. In the smart factory, the Resource Description
Framework (RDF) is used to achieve interoperability [4], for
instance, Semantic Sensor Network (SSN) [5] answers the
need for a domain-independent and end-to-end model for
sensing applications by merging sensor-focused, observation-
focused and system-focused views.
 The integration of digital factory and smart factory in a
holistic way has not been considered in research.
Furthermore, companies develop vendor specific solutions for
their own IT architectures. They do not standardize the
services and functionalities and they lack either semantic or

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 26th CIRP Design Conference

513 Navid Shariatzadeh et al. / Procedia CIRP 50 (2016) 512 – 517

syntactic solutions. Hence, This paper suggests a solution for
integration which not only encompasses standardized
protocols and information models to exchange data, but also a
methodology for the necessary steps which must be taken to
adapt a general solution among the current approaches and
technologies to achieve interoperability. It is based on an
approach to integrate the IoT platform of the virtualized
factory with the PLM platform of the digital factory. IoT
platform is a type of cloud which can store real time data,
retrieve data and enable users to connect, create, analyse and
experience things. First, the paper presents this platform-
based system architecture. Secondly it presents a generic
framework for creating communication interfaces between the
two domains. The generic solutions is based on basic read and
write, update operations, to be extended into more advanced
service interfaces provided by IoT platforms.
 Open Services for Lifecycle Collaboration (OSLC) initiative
provides a minimalistic set of standardized information
models. Assuming a loosely-coupled distributed architecture
of tools and services, OSLC adopts the Linked Data (LD)
approach to ensure data consistency across the data resources.
Hence, this paper adapts it for developing integration
specification.

2. OSLC as a specification for smart and digital factory
integration

 OSLC is an industrial effort which develops standards that
make it easy and practical for software lifecycle tools to share
data with one another. OSLC standards apply the principles of
linked data (LD) and REST protocol to provide an
interoperable web standards-based environment [6]. In other
word it is a framework that standardizes the data format of
data to be exchanged, the protocol to communicate data and
services to create, read, update and delete (CRUD) data.
 The LD framework allows linking between data from
heterogeneous systems and it is considered a flexible
approach that provides support for integrating data through
different tools [7]. OSLC is built on web specifications and
uses RDF as a fundamental data model. RDF is a framework
that represents the LD and it provides a generic graph-based
data model for describing resources, including their
relationships with other resources. LD consists of two
technologies; Uniform Resource Identifiers (URIs) and the
HyperText Transfer Protocol (HTTP). Although HTTP may
be expensive for many IoT devices, it can be beneficial for the
web and IoT interoperability since it is developed originally
for the web. That is one of the reasons to select OSLC as a
specification for IoT and PLM integration in our approach.
 An OSLC adapter is the software that represents tool data in
the form of an OSLC resource and makes these resources
available to other tools. These resources are available through
web services. OSLC defines the concept of ServiceProvider
for each tool adapters to expose containers of resource that is
hosted by a tool for integration.

3. Why OSLC?

 There are three ways to configure physical things, services

and end users in an IoT context (see figure 1). In the first case
from the left, physical entity, software, and the service are
running on the same physical entity (a manufacturing
resource). This is a configuration in which we have a
powerful physical entity which can support for example the
HTTP protocol and services are deployed on the physical
entity. In the second case from the left, the service of the user
is running in the cloud. The API used between the service
client and the service, however, is the same. In the third
configuration the service is not running on the physical entity,
but in the cloud. This can be the configuration for a
constrained device that may not be able to expose a user
interface across the network For example, due to energy
consumption limitation [8]. The third scenario is the subject
of this work, in other words we investigate how we virtualize
a physical resource in an IoT platform, how we process this
data and extract information, how we integrate this derived
information with digital factory information management
application.

Fig. 1. Three types of configurations of physical entities and services

 In order to provide structure to the Internet, network
designers organize protocols . All protocols belong to one of
five layers and provide services to the layer above. Figure 2
shows the traditional five-layer Internet protocol stack. The
application layer is the top layer which is visible to the end-
user; this is where the applications and their application-layer
protocols reside [9].At this level the data is provided to the
user.

 Fig. 2. Five layer internet protocol

 CoAP is specialized web transfer protocol for use with
constrained nodes and constrained networks in the IoT [10].
As mentioned, OSLC uses HTTP which can also be used as
communication protocol of IoT devices if they are not
constrained devices. This makes it a suitable framework for
linking and integrating heterogeneous data. If IoT devices are
constrained devices and use CoAP, OSLC still can be used
since CoAP can be implemented of the REST pattern using
HTTP. Hence, in this work we assume that physical entities
work over internet protocol (IP) and that there are gateways

User

Service

Software

Physical
entity

Physical
entity

Service

Software

API

User

API

API

Cloud

Service

Application

Transport

Network

Link

Physical

Data

represent and present

514 Navid Shariatzadeh et al. / Procedia CIRP 50 (2016) 512 – 517

available that can be used in application layers for protocol
translation in order to assist constrained devices to
communicate with an IoT platform or other IoT devices.

4. System Architecture

 Among IT applications in digital factory, PLM is critical for
the integration and management of information. Hence we use
a PLM system to represent the digital factory in this work.
Figure 3 illustrates our system architecture for the integration
between the ‘IoT platform’ and ‘PLM’. The role of the PLM
system is collecting and managing data of product definitions,
processes, resources and decisions across the whole product
lifecycle supporting changes and enabling traceability of these
changes. Unique identifiers of products or parts are important
for the PLM application during the lifecycle because products
in PLM are used not only inside the enterprise but also in a
distributed and collaborative environment. To fulfil the
traceability and reusability of product/resource data, PLM
systems usually follow a structured data model and usually
use relational databases for persistent storage of data and vault
(generally a protected file area) for storages of files [11]. They
are always a client-server application, i.e., most of the
application logic is executed on the server. The IoT layer is
used for collecting large amounts of real time data, typically
used for monitoring, controlling and planning on the shop
floor. The real time information comes from various sources
such as temperature pressure sensors or machine controllers.
One difference between the IoT layer and the PLM layer is
the database type to store data. In the IoT layer large amounts
of data are collected and stored in an unstructured way and in
real time databases. Real-time data bases in the IoT cloud are
temporal, meaning that time is a dimension. For instance in
IoT, individual stop times of a manufacturing resource are
stored but after processing and converting data to statistics
such as mean time between failures (MTBF), this can be
stored in a PLM system for improvement of the resource.
Temporal data are stored with timestamps and the data
validity is lost after some time or is stored as historical data.
For instance a resource temperature, as new temperatures
come, the old temperature is not valid. NoSQL databases such
as graph databases are more suitable for collection of real
time data due to their ability for scaling up and capability of
doing millions of data transactions per second.

 Figure 4 demonstrates a summary of our idea to link data by
creating OSLC resources for the same artifact in different
systems and using OSLC core to create services to read, write,
update or delete resources. This approach requires proprietary
adaptors. The synchronization engine is responsible for the
propagation and adjusting of required changes of artifacts in
different systems when one artifact or one of its properties has
been modified. Basically it is a time or event based procedure
to harmonize the changes of integrated data in two platforms.
For instance, when a new version of a file pushed to IoT is
available in a PLM system, it should replace the former
version or reversion. A common information model can be
used to identify the integration structure in the IoT platform.

Fig. 4. OSLC Core concepts and relationships

 The idea is that all devices interact with an IoT platform and
the platform can communicate with other hubs such as a PLM
system. Each hub has a catalog that allows the other hubs to
access, search and update the data it can provide. A catalog is
a specific type of resource representing a collection of
resource items. Each item in a catalog refers to a single
resource by its unique URI.

5. Suggested approach to integrate a digital and
virtualized factory based on an IoT platform

5.1. Create domain model

The domain introduces the main concepts of the virtualized
and digital factory. This step must be done by carefully
analyzing individual domains to create sets of domain-specific
concepts with properties and relations. Information from
resources/products is heterogeneous and distributed. It is
always necessary to build an abstract model to identify the
overlapping concepts and their corresponding semantics
among involved domains. Figure 5 demonstrates a domain
model in a UML class diagram according to IoT_A proposed
Architecture [12]. Physical articles are represented in the
digital world by virtual entities. There are many kinds of
virtual representations of physical entities such as machine
tools or even temperature sensors. Virtual entities are linked
to the single physical object that they represent. Each virtual
entity must have one and only one ID that identifies it
uniquely. Virtual entities are synchronized representations of
a desired set of properties of the physical entity. This implies
that the desired parameters representing the characteristics of
the physical entity must be updated upon any change of the

Thing

Physical
entity

PLM

URL:ID

Integration in Iot platform Common info
model

Adaptor Adaptor

URL:ID

Same artifact
Resource

Physical layer Physical layer

IoT platform

DB Vault PLM

Services (CRUD)

API

API

Fig. 3. System architect

515 Navid Shariatzadeh et al. / Procedia CIRP 50 (2016) 512 – 517

physical entity attributes. For instance, if a temperature of a
physical entity is changed, the temperature property of its
corresponding virtual article must be updated as well. Digital
entities are elements such as data-base entries, 3D models or
other digital representations of the physical article in the PLM
system. Devices are thus technical objects for connecting the
real world of physical entities with the digital world of the
Internet such as sensors and actuators. Services are functions
that a virtual entity or physical entity can perform. A simple
example of a service is a query written to a virtual thing to get
the temperature of a particular component of a machine tool.
Services can be orchestrated together in order to form a
complete system. Virtual entity services provide access to
information on a virtual entity level, process the collected data
and trigger an action. An event is an action that occurs at an
instance in time and changes a state in the system such as a
value change in data exposed by a virtual entity. The event
can be triggered within a service or trigger a service. Any
virtual entity can subscribe to its own or another entity's
events. When the event is fired, the source of the event passes
the event data to the subscriber. For instance, when a
temperature is higher than a predefined threshold a
notification will be sent to a maintenance employee.

Fig. 5. Domain model

 The following example represents an example of the domain
modeling implemented in Thingworx which is an IoT
platform. In order to monitor the changes that happen in an
environment, two temperature sensors are installed in
different locations. The aim is to announce to its users when it
increase or decrease temperature due to changes it has
noticed. To find the changes , the exponentially weighted
moving average (EWMA) is used. EWMA creates averages of
data in a way that gives less and gives less weight to older
data [13].In this example; sensor services push temperature
data every 20 seconds. We have two virtual things
representing these two physical things in an IoT platform with
one property (temperature). Then there is the “timer average
thing” which is set to activate every 60 seconds. This thing
has a service which gets the value from sensors A and B and
creates the average of the temperature values. This requires a
time interval to calculate the average as the input. The input is
set to 60 seconds. In order to automatically use this service, a
subscription is created which calls this service every 60
seconds. The output is then being saved into a data table
which has 2 fields: A timestamp (unique ID) and the average

Value field. Every 60 seconds, the subscription is adding a
new row into the data table. Another service is created to
convert the data from the data table into a JSON file. This can
be called from outside with a simple REST call, and then it
can be visualized in the browser of the JSON file.

5.2. Develop information model

 The IoT information model defines the structure (e.g.
relations, attributes) of all the information that is identified in
the domain modeling step. This includes modeling of the
overlapping concepts in the information flow, the data storage
in the IoT platform and how these are associated. The
information model details the modeling of virtual entities. It
identifies attributes with a name and a type and one default
value to which meta-information can be associated. As
mentioned in section 3, important meta-information with
respect to real time data are e.g. at what time a value was
measured (i.e. timestamp) and the location where a
measurement took place. Moreover, in this step the
relationship between virtual entity and service is detailed in
the sense that it relates a certain attribute of the virtual entity
to a service. The IoT information model models all the
concepts of the domain model that are to be explicitly
represented and manipulated in the virtualized world. In
addition, the IoT information model explicitly models
relations between these concepts. The main domain model
concepts that are explicitly represented in an IoT system are
the virtual entity and digital entities and their corresponding
services. As the virtual entity is the model of the physical
entity in the digital world, there is no other representation of
the physical entity as part of the IoT information model. The
minimalistic set of concepts and their corresponding
properties are selected according to the domain model to be
represented in the IoT platform. Virtual entity attributes are
properties of a physical entity that are required to be captured
in the virtual world. The entity type may refer to concepts in
the domain ontology in the previous step that may define what
attributes a virtual entity of this type may have.

5.3. Communication model and protocol

 Communication capabilities are relative to the type of data
exchanged with a device (identifier + data, timestamps).
Interoperability is achieved by using URIs as unique
identifiers for things. The thing-URL has to be available over
the network. If a device associated to a thing is not able to
handle the URL of the thing, it is associated with a gateway
which has to translate the RDF URL to its respective device
specific identifier. Thanks to OSLC, the description of the
representation of the information can be in XML, RDF+XML
or JSON. JSON is more compact than XML and consequently
it needs less space for data storage. It is important to clarify
that virtual entities in IoT can also interact with non-IoT
things. For example, a virtual entity could need certain
information provided by an autonomous web application, a
non-IoT entity, in order to make decisions. The ability of RDF
to represent properties which are not part of the OSLC
specification makes it possible to link any virtual entity

Is associated

Physical
entity

Device

Services

DigitalEntity

Event

Is associated

Virtual Entity

Contains

Exposes

Contain

Contains

Subscription

516 Navid Shariatzadeh et al. / Procedia CIRP 50 (2016) 512 – 517

property to other resources on the web. When using RDF for
information annotation URLs have to be accommodated in the
information descriptions.

5.4 Identify type of data to be integrated between IoT and
PLM

 There are different types of data which need to be dealt with
in IoT applications. The first type includes real time data
representing the current status of the system. In IoT only the
data read directly from a sensor can be considered as real time
data. This type of data is not the typical target of a PLM
system. The second type is derived data that have been
created by analysis of raw data, for instance, the average
energy consumption of a manufacturing resource in a specific
time span. The third type of data is inferred data which is
knowledge that has been inferred by applying logic or facts.
For instance observing a specific pattern of vibration can be a
sign of a machine failure. The second and third types of data
are worthwhile to be part of a configuration management in a
PLM system to be considered for product design
improvement. A manufacturing resource, its structure and
technical data are pieces of information which usually exist in
a PLM system. This information may have to be integrated in
an IoT platform to avoid manual instantiation. Using OSLC
and linked data helps minimizing the amount of data to be
copied between two systems. Another type of integration is
file based. File integrations mean that the application files are
managed by the PLM system, through some checkin-checkout
mechanism. Here the PLM system knows nothing about the
file content; it is just managed as bulk data. However, some
metadata are generally managed, like file name and format,
creation and modification dates, version and states. For
instance, the last revision of the STEP NC file including
product description, dimensions and tolerances, features,
toolpath and operations, from a PLM system can be linked to
an IoT platform, for an optimization purpose.

5.4. Information flow and permissions

 After identifying the data which is transferred between the
PLM system and IoT platform, the information flow
mechanism must be identified. OSLC and linked data can
support push pattern and request/response. The push pattern is
a one-way communication between a PLM and IoT in which
an IoT server sends data to a PLM server that receives the
data. The IoT server in this case knows the addresses (URIs)
in advance of the PLM OSLC services to create or update
data. The request/response pattern is a synchronous or
asynchronous way of communication between IoT server and
PLM service resources. A server sends a request to a PLM
OSLC server. The IoT server will receive the request and will
send a response back to the PLM OSLC server. The IoT
server is waiting for the response until the PLM OSLC server
has sent it. There are two sets of permissions, one for design
time and one for run time. The design time permissions are
for managing who has the privilege of creating and modifying
virtual entities. The run time permissions determine who can
access data, execute services, and trigger events on a virtual

entity. Users or a group of users can be embedded in one
permission to be able to create, read, write and update data or
refuse them.

5.5. Identify timing in integration

 Timing is an important aspect of integrations. In general
when a data item changes, the recent value must be reflected
in the other platform using that data. It could also be available
on request. However statistical data can be integrated in time
intervals, for instance MTBF of a manufacturing resource is
typically updated every three or six months. Another type of
integration is on demand. For instance, when a user asks for
the last measurement of a sensor, the value should be sent.
Timing of integration should be identified by considering the
information life cycle in the IoT platform. Some information
might be stored permanently or have an expiry date after
which the information is to be removed. It is also possible to
store data for a specific time span and after that period only a
portion of the data is kept while the rest is dispensed.

6. Case study

 Our aim is to illustrate the proposed PLM and IoT platform
integration concepts in a case study. The idea is to integrate
data and IT tools in a way that various applications (services)
can act on the data in parallel, enabling faster feedback
between activities in PLM and IoT. The IT environment in
this case is heterogeneous, based on the ARAS Innovator
PLM system and Thingworx IoT platform. Here the domain
of interest is monitoring of machine status with parameters
such as temperature and pressure. From analysis of this
domain the ontologies of domain-specific concepts with
properties and relations are created, as well as an
identification of what information is required from other
domains. Consequently a set of minimalistic set of concepts
with properties and relations to be shared has been identified.
An adaptor has been developed to expose machine technical
data stored in Innovator and integrate them with Thingworx.
To get the real time data, a machine was simulated using
Thingworx Java SDK which establishes and manages a secure
AlwaysOn connection with the Thingworx server. The data
are simulated by random numbers and pushed to the platform
in specific time spans. Figure 6 illustrates the main flow of
implementation. Manufacturing resources and their technical
information are exposed using the OSLC core and are
registered in the Thingworx platform in a table which
basically is a JSON implementation. Secondly, a virtual entity
is simulated. Hence real time data are pushed to the virtual
entity. Then this real time data are bound to the original entity
in the platform. Different services and events are also
developed for monitoring the real time data. For instance if a
temperature is beyond a specific threshold, then a user is
notified using the defined subscription. Moreover, important
events such “DataChange” are defined to update the changed
properties. Derived information from Thingworx is exposed
through services as JSON and XML and then with the help of
Innovator API is integrated in Innovator. The case study
implies that the suggested IT system architecture together

517 Navid Shariatzadeh et al. / Procedia CIRP 50 (2016) 512 – 517

with OSLC can be used and implemented using the available
technologies for integration purpose. The evaluation of the
suggested approach must be also analysed with resource-
constrained internet devices in future work of this research.

7. Conclusion

 To achieve interoperability between a smart factory (real
time data) and a digital factory three layers must be
considered. First data transfer protocols, second, data
representation and presentation and third semantics and
understanding of data. There are many approaches,
technologies and data models to accomplish interoperability
on each level. However, in order to select the most suitable
ones according to the desired goals, there is a need for
guidelines to show the different steps that need to be taken to
identify the best solution for integration. Hence this paper
contributes to IoT domain integration with digital factory by
developing an approach to identify what, when and how
information should be integrated. Secondly it suggests
integration between IoT and PLM platforms using semantic
web technology and OSLC. OSLC uses HTTP as the data
transport protocol and RDF and JSON as the data format.
Another advantage is that it is an open standard; therefore
everyone can contribute to it. Its openness also allows that any
particular resource can be linked to other information in other
hubs. It also couples comprehensive ontologies with light
weight data formats like JSON which needs less space for
storage and processor. Security in the IoT is a significant issue
out of scope of this paper. However, it must be a critical
aspect in the solutions for interoperability. The security issue
will be the investigated in the future research of this work.

References

[1]http:.//www.oxforddictionari es.com/definition/American_english/internet_
of_things.Accessed:2015-04-18

[2] Hermann. M, Pentek. T, Otto. B. Design Principles for Industry 4.0
Scenarios: A Literature Review; 2015.

[3] Radu. C, Ioana. A, Olteanu, Gheorghe. Smart Monitoring of Potato Crop:
A Cyber-Physical System Architecture Model in the Field of Precision
Agriculture. Conference Agriculture for Li fe for Agriculture; 2015.Vol 6
p. 73–79.

[4] Ryman A. Linked Data, RDF, and OSLC Resource Shapes: Define REST
API Contracts for RDF Resource Representations; 2015.

[5] Hasemann. H, Kleine. O, Kroller, A, Leggieri. M, and Pfisterer. D.
Annotating real-world objects using semantic entities in Wireless Sensor
Networks. Springer; 2013. p. 67-82.

[4] Shariatzadeh. N, Sivard. G and Lindberg. G. An approach for
manufacturing process representation in product lifecycle management.
Key Engineering Materials ;2014.Vol. 572 p. 239-244..

[5] Open-services.net. OSLC Primer - Open Services for Lifecycle
Collaboration. http://open-services.net/resources/tutorials/oslc-primer/;
2015.

[6] Lee B. Linked data-design issue. Available at www3.org/designIssues/
 /linkeddata.html; 2006.
[7] OSLC Core Speci fication Workgroup. OSLC core speci fi cation version

2.0. Technical report, Open Services for Lifecycle Collaboration; 2010.
[8] Bauer. M. et al. Final architectural reference model for the

IoT.http://www.iot-a.eu/arm . 2014.
[9] Braden. R (editor.). Requirements for Internet Hosts – Communication

Layers. October 1989. https://tools.ietf.org/html/rfc1122
[10] Ishag. I, Carels. D, Teklemariam, K, Hoebeke. J, Abeele. F.IETF

Standardization in the field of Internet of Things (IoT): A survey.
Journal of Sensor and Actuator Network; 2013. P. 235-287.

 [11] Shariatzadeh. N, Lindberg. L, Sivard. G. Rapid production changes
through the coordination of factory layout models and activities. Journal
of Applied Mechanical Engineering, 2014.

[12] Magerkurth. K (editor: SAP).The Internet of Things – Architecture,
Deliverable D1.4 Converged architectural reference model for IoT.
http://www.iot-a.eu/public/public-documents;2012.

[13] Patel. A, Divecha. J. Modified exponentially weighted moving average
(EWMA) control chart for analytical process data. Journal of Chemical
Engineering and materials Science;2011. Vol.2(1). P-12-20.

.

1:Digital thing
2:Virtual thing

3: Binding real
time data to the

digital thing

Technical
data from

PLM

Fig. 6. Virtualization of a physical entity in an IoT platform and integration with its technical data from PLM system

